Changes of the peripheral nerve excitability in vivo induced by the persistent Na+ current blocker ranolazine
详细信息查看全文 | 推荐本文 |
摘要
Persistent Na+ current (Nap) in the peripheral axons play an important functional role in controlling the axonal excitability. Abnormal Nap is believed to contribute to neurodegeneration and neuropathic pain, and thus it is an attractive therapeutic target. To assess the behavior of selective Nap blockade, axonal excitability testing was performed in vivo in 10 normal male mice exposed to ranolazine by recording the tail sensory nerve action potentials (SNAPs). Twenty minutes after administering ranolazine i.p. (50 mg/kg), the following changes were observed: lower SNAP amplitudes and the need for greater stimulus currents; greater threshold changes induced by long hyperpolarizing currents; reduced accommodation to long depolarizing current along with reduced late subexcitability; and reduced strength-duration time constant. These changes are explained by the suppression of Nap leading to greater threshold currents, partial block of transient Na+ current, and suppression of slow K+ currents. The suppressed slow K+ currents appear to limit the modification of the membrane excitability by ranolazine. This study confirms the utility of axonal excitability testing as a useful treatment biomarker in neurological conditions in which Nap function is being modified.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700