The two-component system ScnRK of Streptococcus mutans affects hydrogen peroxide resistance and murine macrophage killing
详细信息查看全文 | 推荐本文 |
摘要
To survive macrophage killing is critical in the pathogenesis of viridians streptococci-induced infective endocarditis (IE). Streptococcus mutans, an opportunistic IE pathogen, generally does not survive well phagocytic killing in murine macrophage RAW 264.7 cells. A putative two-component system (TCS), ScnR/ScnK from S. mutans, was investigated to elucidate the mechanisms underlying bacteria-cellular interaction in this study. Both the wild-type and mutant strains were phagocytosed by RAW 264.7 cells at a comparable rate and an increased intracellular susceptibility during a 5 h incubation period was observed with the scnRK-null mutants. The amount of reactive oxygen species (ROS) in activated macrophages was reduced significantly after ingesting wild-type, but not scnRK-null mutant strains, suggesting that increased macrophage killing of these mutants is due to the impaired ability of S. mutans to counteract ROS. Additionally, both scnR- or scnRK-null mutants were more susceptible to hydrogen peroxide. Interestingly, scnRK expression was unaffected by hydrogen peroxide. These experimental results indicate that scnRK is important in counteracting oxidative stress in S. mutans, and decreased susceptibility to phagocytic killing is at least partly attributable to inhibition of intracellular ROS formation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700