Study of the charge sharing in a silicon pixel detector by means of α-particles interacting with a Medipix2 device
详细信息查看全文 | 推荐本文 |
摘要
The energy deposited in a silicon detector by a heavy charged particle, such as an greek small letter alpha-particle, creates a large number of electron–hole pairs. Under the influence of an electric field, the carriers drift towards the corresponding electrode. Due to diffusion, the charge carriers are spread. Lateral spreading depends on the collection time; hence it is expected to be smaller for larger fields. In the case of a pixellated detecting structure, this lateral spread can cause a sharing of the charge between the electrodes and many pixels will have a signal: that is, charge carriers generate a cluster of adjacent pixels. Also influencing the charge collection and its spread is the large concentration of electron–hole pairs generated locally by the greek small letter alpha-particle, which creates distortions of the electric field along the ionizing path, giving rise to the so-called plasma and funnelling effects. The results of the charge-sharing effect measured in the Medipix2 pixel detectors are shown as a function of the greek small letter alpha-particle energy and applied bias voltage. A model describing the effects of plasma and diffusion on the charge collection and charge sharing is presented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700