Specific lipids influence the import capacity of the chloroplast outer envelope precursor protein translocon
详细信息查看全文 | 推荐本文 |
摘要
Recent studies demonstrated that lipids influence the assembly and efficiency of membrane-embedded macromolecular complexes. Similarly, lipids have been found to influence chloroplast precursor protein binding to the membrane surface and to be associated with the Translocon of the Outer membrane of Chloroplasts (TOC). We used a system based on chloroplast outer envelope vesicles from Pisum sativum to obtain an initial understanding of the influence of lipids on precursor protein translocation across the outer envelope. The ability of the model precursor proteins p(OE33)titin and pSSU to be recognized and translocated in this simplified system was investigated. We demonstrate that transport across the outer membrane can be observed in the absence of the inner envelope translocon. The translocation, however, was significantly slower than that observed for chloroplasts. Enrichment of outer envelope vesicles with different lipids natively found in chloroplast membranes altered the binding and transport behavior. Further, the results obtained using outer envelope vesicles were consistent with the results observed for the reconstituted isolated TOC complex. Based on both approaches we concluded that the lipids sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylinositol (PI) increased TOC-mediated binding and import for both precursor proteins. In contrast, enrichment in digalactosyldiacylglycerol (DGDG) improved TOC-mediated binding for pSSU, but decreased import for both precursor proteins. Optimal import occurred only in a narrow concentration range of DGDG.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700