Transferred cross-relaxation and cross-correlation in NMR: effects of intermediate exchange on the determination of the conformation of bound ligands
详细信息查看全文 | 推荐本文 |
摘要
Exchange transferred effects in solution-state NMR experiments allow one to determine the conformation of ligands that are weakly bound to macromolecules. Exchange-transferred nuclear Overhauser effect spectroscopy (‘TR-NOESY’) provides information about internuclear distances in a ligand in the bound state. Recently the possibility of obtaining dihedral angle information from a ligand in the bound state by exchange-transferred cross-correlation spectroscopy (‘TR-CCSY’) has been reported. In both cases the analysis of the signal amplitudes is usually based on the assumption that rapid exchange occurs between the free and bound forms of the ligand. In this paper we show that the fast exchange condition is not easily attained for observing exchange-transferred cross-correlation effects even in systems where exchange-transferred NOE can be observed. Extensive simulations based on analytical expressions for signal intensities corresponding to fast, intermediate, and slow chemical exchange have been carried out on a test system to determine the exchange regimes in which the fast exchange condition can be fulfilled for successfully implementing TR-NOESY and TR-CCSY.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700