Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter
详细信息查看全文 | 推荐本文 |
摘要
| Figures/TablesFigures/Tables | ReferencesReferences

Summary

Real-time data from on-line sensors offer the possibility to update environmental simulation models in real-time. Information from on-line sensors concerning contaminant concentrations in groundwater allow for the real-time characterization and control of a contaminant plume. In this paper it is proposed to use the CPU-efficient Ensemble Kalman Filter (EnKF) method, a data assimilation algorithm, for jointly updating the flow and transport parameters (hydraulic conductivity and porosity) and state variables (piezometric head and concentration) of a groundwater flow and contaminant transport problem. A synthetic experiment is used to demonstrate the capability of the EnKF to estimate hydraulic conductivity and porosity by assimilating dynamic head and multiple concentration data in a transient flow and transport model. In this work the worth of hydraulic conductivity, porosity, piezometric head, and concentration data is analyzed in the context of aquifer characterization and prediction uncertainty reduction. The results indicate that the characterization of the hydraulic conductivity and porosity fields is continuously improved as more data are assimilated. Also, groundwater flow and mass transport predictions are improved as more and different types of data are assimilated. The beneficial impact of accounting for multiple concentration data is patent.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700