Local translation of ATP synthase subunit 9 mRNA alters ATP levels and the production of ROS in the axon
详细信息查看全文 | 推荐本文 |
摘要
To date, it has been demonstrated that axonal mRNA populations contain a large number of nuclear-encoded mRNAs for mitochondrial proteins. Here, we report that the mRNA encoding ATP synthase subunit 9 (ATP5G1), a key component of Complex V of the oxidative phosphorylation chain, is present in the axons of rat primary sympathetic neurons, as judged by in situ hybridization and qRT-PCR methodology. Results of metabolic labeling studies establish that this nuclear-encoded mRNA is translated in the axon. The siRNA-mediated knock-down of axonal ATP5G1 mRNA resulted in a significant reduction of axonal ATP5G1 protein and ATP levels. Silencing of local ATP5G1 expression enhanced the production of local reactive oxygen species (ROS). Importantly, reduction in the levels of ATP5G1 expression resulted in a marked attenuation in the rate of elongation of the axon. Exposure of the distal axons to nordihydroguaiaretic acid (NDGA), a ROS scavenger, mitigated the reduction in the rate of axon elongation observed after knock-down of ATP5G1. Taken together, these data call attention to the key regulatory role that local translation of nuclear-encoded mitochondrial mRNAs plays in energy metabolism and growth of the axon.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700