UV-ozone modification of plasma-polymerised acetonitrile films for enhanced cell attachment
详细信息查看全文 | 推荐本文 |
摘要
Plasma polymerisation is of great interest for modifying the surface properties of biomedical devices in order to control, for example, protein adsorption and cell attachment. In this paper we present results for plasma-polymerised acetonitrile deposited onto silicon or polystyrene substrates. The chemistry of films deposited under a range of experimental conditions was studied by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). XPS provided evidence that the elemental composition of the films varied with rf power to flow rate parameter (W/F) with films produced at higher W/F being deficient in nitrogen. FTIR revealed that the plasma deposited film contained a wide range of nitrogen functional groups including amine, imine and nitrile. Oxidation of the films by exposure to radiation from a low pressure mercury vapour lamp in an air ambient increased the surface oxygen levels from 3 to 17at.%after 300s exposure. XPS also revealed that the oxidation process proceeded via the formation of carbonyl groups at short exposure times (<60s) while longer treatment times (>60s) resulted in an increase in the concentration of carboxyl groups. To assess their potential to support cell growth, polystyrene culture dishes coated with plasma deposited films and UV-ozone oxidised films were seeded with 1BR.3.N human fibroblast cells and incubated for up to 72h. Un-oxidised plasma-polymerised acetonitrile films were found to give comparable cell attachment densities as tissue culture polystyrene. The greatest cell attachment density was found with plasma polymer films which had been UV-ozone treated for the longest time (300s). Enhanced attachment to this surface was attributed to the high level of carboxylic groups found on this substrate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700