Comparative study of the microstructure of 5052 aluminum alloy sheets under quasi-static and high-velocity tension
详细信息查看全文 | 推荐本文 |
摘要
In order to reveal the high-velocity deformation mechanisms of 5052 aluminum alloy sheets, this work compares the dynamic plastic deformation behavior and the microstructure evolutions with those of the quasi-static case by scanning electron microscopy (SEM) observations, electron back scattering diffraction (EBSD) analysis, and transmission electron microscopy (TEM) studies. Results show that the dynamic process exhibits a very different macro fracture shape and a much similar micro deformation pattern as compared with the quasi-static case, and under both conditions, the dislocation-slip mechanism works during deformation. For the shock effect of high-velocity deformation, much denser dislocations are generated and the tendency of cross-slip of dislocations increases. The dislocation bands are more narrow and denser than those shown in the quasi-static case, and a much more uniform dislocation configuration is also exhibited after dynamic loadings. In addition, under dynamic conditions, the existing of pre-strain will introduce an accommodated effect on the dynamically induced dislocations, a slight reduction of density combining with a higher movement tendency. The characteristics of multi-slips and homogenization effect of dislocations under dynamic conditions will result in much higher plasticity and strength of materials over the quasi-static ones.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700