Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O + [DMIM]DMP system
详细信息查看全文 | 推荐本文 |
摘要
In this paper, the thermophysical properties of the H2O + 1,3-dimethylimidazolium dimethylphosphate ([DMIM]DMP) system were studied. The boiling point method was adopted to measure the vapor pressures of the system at mass fraction of ionic liquids (ILs) in the range from 0.10 to 0.90 as well as pressures range from 2 kPa to 101 kPa. And the general non-random two-liquid (NRTL) activity coefficient model was used to correlate the experimental data. The heat capacities of the system were determined by a BT2.15 Calvet microcalorimeter at mass fraction of ILs in the range from 0.10 to 0.90 and temperatures range from 303.15 K to 353.15 K. A polynomial equation on temperature and concentration was correlated with satisfactory results. And then theoretical analysis of the coefficient of performance () of a single-effect absorption refrigeration cycle was simulated using H2O + [DMIM]DMP as working pair on the basis of the models of vapor pressure and heat capacity. The simulation results show that the of H2O + [DMIM]DMP system is close to that of conventional working pair H2O + LiBr. In addition, the H2O + [DMIM]DMP system improved the limitations of crystallization and corrosion of H2O + LiBr system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700