DEP induction of ROS in capillary-like endothelial tubes leads to VEGF-A expression
详细信息查看全文 | 推荐本文 |
摘要
Inhalation of diesel exhaust particles (DEPs) is associated with pulmonary and cardiovascular disease. One contributor to pathogenesis is inhaled particles reaching and injuring the lung capillary endothelial cells, and possibly gaining access to the blood stream. Using in vitro capillary tubes as a simplified vascular model system for this process, it was previously shown that DEPs induce the redistribution of vascular endothelial cell-cadherin (VE-Cad) away from the plasma membrane to intracellular locations. This allowed DEPs into the cell cytoplasm and tube lumen, suggesting the tubes may have become permeable (). Here some of the mechanisms responsible for endothelial tube changes after DEP exposure were examined. The results demonstrate that endothelial tube cells mounted an oxidative stress response to DEP exposure. Hydrogen peroxide and oxidized proteins were detected after 24 h of exposure to DEPs. Particles induced relocalization of Nrf2 from the cytoplasm to the nucleus, upregulating the expression of the enzyme heme oxygenase-1 (HO-1). Surprisingly, vascular endothelial cell growth factor-A (VEGF-A), initially termed 鈥渧ascular permeability factor鈥?(VPF), was found to be up-regulated in response to the HO-1 expression induced by DEPs. Similar to DEPs, applied VEGF-A induced relocalization of VE-Cadherin from the cell membrane surface to an intracellular location, and relocalization of VE-cadherin was associated with permeability. These data suggest that the DEPs may induce or contribute to the permeability of capillary-like endothelial tube cells via induction of HO-1 and VEGF-A.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700