Mapping Soil Texture of a Plain Area Using Fuzzy-c-Means Clustering Method Based on Land Surface Diurnal Temperature Difference
详细信息查看全文 | 推荐本文 |
摘要
The use of landscape covariates to estimate soil properties is not suitable for the areas of low relief due to the high variability of soil properties in similar topographic and vegetation conditions. A new method was implemented to map regional soil texture (in terms of sand, silt and clay contents) by hypothesizing that the change in the land surface diurnal temperature difference (DTD) is related to soil texture in case of a relatively homogeneous rainfall input. To examine this hypothesis, the DTDs from moderate resolution imagine spectroradiometer (MODIS) during a selected time period, i.e., after a heavy rainfall between autumn harvest and autumn sowing, were classified using fuzzy-c-means (FCM) clustering. Six classes were generated, and for each class, the sand (> 0.05 mm), silt (0.002-0.05 mm) and clay (< 0.002 mm) contents at the location of maximum membership value were considered as the typical values of that class. A weighted average model was then used to digitally map soil texture. The results showed that the predicted map quite accurately reflected the regional soil variation. A validation dataset produced estimates of error for the predicted maps of sand, silt and clay contents at root mean of squared error values of 8.4%, 7.8%and 2.3%, respectively, which is satisfactory in a practical context. This study thus provided a methodology that can help improve the accuracy and efficiency of soil texture mapping in plain areas using easily available data sources.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700