Periodic solution for nonlinear vibration of a fluid-conveying carbon nanotube, based on the nonlocal continuum theory by energy balance method
详细信息查看全文 | 推荐本文 |
摘要
A nonlinear model is developed for the vibration of a single-walled carbon nanotube (SWCNT) based on Eringen鈥檚 nonlocal elasticity theory. The nanotube is assumed to be embedded in a Pasternak-type foundation with simply supported boundary conditions. The nonlinear equation of motion is solved by the energy balance method (EBM) to obtain a sufficiently accurate flow-induced frequency. It is demonstrated that the nonlinearity of the model makes a reasonable change to the frequency at high flow velocity and for the large deformations. Furthermore, the deviation of the frequency from the linear frequency will be exaggerated with an increase in the nonlocal parameter and a decrease of the Pasternak parameters. Ultimately, the results show that the nonlinearity of the model can be effectively tuned by applying axial tension to the nanotube.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700