Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods
详细信息查看全文 | 推荐本文 |
摘要
Cobalt ferrite nanoparticles were synthesized by the chemical co-precipitation, normal micelles and reverse micelles methods of iron and cobalt chlorides. X-ray diffraction analysis, Fourier Transform Infrared (FTIR) and Vibrating Sample Magnetometer were carried out at room temperature to study the structural and magnetic properties. X-ray patterns revealed the production of a broad single cubic phase with the average particle sizes of 鈭?2 nm, 5 nm and 8 nm for co-precipitation, normal micelles and reverse micelles methods, respectively. The FTIR measurements between 400 and 4000 cm鈭? confirmed the intrinsic cation vibrations of spinel structure for each one of the three methods. Moreover, the average particle sizes were lower than the single domain size (128 nm) and higher than the super-paramagnetic size (2-3 nm) at room temperature. The results revealed that the magnetic properties depend on the particle size and cation distribution, whereas the role of particle size is more significant.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700