An adapted version of the element-wise weighted total least squares method for applications in chemometrics
详细信息查看全文 | 推荐本文 |
摘要
The Maximum Likelihood PCA (MLPCA) method has been devised in chemometrics as a generalization of the well-known PCA method in order to derive consistent estimators in the presence of errors with known error distribution. For similar reasons, the Total Least Squares (TLS) method has been generalized in the field of computational mathematics and engineering to maintain consistency of the parameter estimates in linear models with measurement errors of known distribution. In a previous paper [M. Schuermans, I. Markovsky, P.D. Wentzell, S. Van Huffel, On the equivalance between total least squares and maximum likelihood PCA, Anal. Chim. Acta, 544 (2005), 254–267], the tight equivalences between MLPCA and Element-wise Weighted TLS (EW-TLS) have been explored. The purpose of this paper is to adapt the EW-TLS method in order to make it useful for problems in chemometrics. We will present a computationally efficient algorithm and compare this algorithm with the standard EW-TLS algorithm and the MLPCA algorithm in computation time and convergence behaviour on chemical data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700