Uropathogenic E. coli Promote a Paracellular Urothelial Barrier Defect Characterized by Altered Tight Junction Integrity, Epithelial Cell Sloughing and Cytokine Release
详细信息查看全文 | 推荐本文 |
摘要
| Figures/TablesFigures/Tables | ReferencesReferences

Summary

The urinary bladder is a common site of bacterial infection with a majority of cases attributed to uropathogenic Escherichia coli. Sequelae of urinary tract infections (UTIs) include the loss of urothelial barrier function and subsequent聽clinical morbidity secondary to the permeation of urine potassium, urea and ammonia into the subepithelium.聽To date there has been limited research describing the mechanism by which this urothelial permeability聽defect develops. The present study models acute uropathogenic E. coli infection in聽vitro using intact canine bladder mucosa mounted in Ussing chambers to determine whether infection induces primarily a transcellular or paracellular permeability defect. The Ussing chamber sustains tissue viability while physically separating聽submucosal and lumen influences, so this model is ideal for quantitative measurement of transepithelial electrical resistance (TER) to assess alterations of urothelial barrier function. Using this model, changes in both tissue ultrastructure and TER indicated that uropathogenic E. coli infection promotes a paracellular permeability defect associated with the failure of umbrella cell tight junction formation and umbrella cell sloughing. In addition, bacterial interaction with the urothelium promoted secretion of cytokines from the urinary聽bladder with bioactivity capable of modulating epithelial barrier function including tumour necrosis factor-伪, interleukin (IL)-6 and IL-15. IL-15 secretion by the infected bladder mucosa is a novel finding and, because IL-15 plays key roles in reconstitution of tight junction function in damaged intestine, this study points to a potential role for IL-15 in UTI-induced urothelial injury.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700