Supercontinent cycles, true polar wander, and very long-wavelength mantle convection
详细信息查看全文 | 推荐本文 |
摘要
We show in this paper that mobile-lid mantle convection in a three-dimensional spherical shell with observationally constrained mantle viscosity structure, and realistic convective vigor and internal heating rate is characterized by either a spherical harmonic degree-1 planform with a major upwelling in one hemisphere and a major downwelling in the other hemisphere when continents are absent, or a degree-2 planform with two antipodal major upwellings when a supercontinent is present. We propose that due to modulation of continents, these two modes of mantle convection alternate within the Earth's mantle, causing the cyclic processes of assembly and breakup of supercontinents including Rodinia and Pangea in the last 1 Ga. Our model suggests that the largely degree-2 structure for the present-day mantle with the Africa and Pacific antipodal superplumes, is a natural consequence of this dynamic process of very long-wavelength mantle convection interacting with supercontinent Pangea. Our model explains the basic features of true polar wander (TPW) events for Rodinia and Pangea including their equatorial locations and large variability of TPW inferred from paleomagnetic studies. Our model also suggests that TPW is expected to be more variable and large during supercontinent assembly, but small after a supercontinent acquires its equatorial location and during its subsequent dispersal.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700