Polychlorinated biphenyls disrupt the actin cytoskeleton in hippocampal neurons
详细信息查看全文 | 推荐本文 |
摘要
It is well known that developmental exposure to polychlorinated biphenyls (PCBs) could cause learning and memory deficits, but the underlying mechanisms are not clear. Actin cytoskeleton is directly involved in synaptic plasticity which is considered critical to learning and memory formation by LIM kinase 1 (LIMK-1)/cofilin pathway. To determine whether PCBs could alter actin cytoskeleton, we exposed the cultured hippocampal neurons to PCBs mixture Aroclor 1254 (A 1254). By biochemical measurement, fluorimetric assay and fluorescence microscopy, we found that A 1254 elicited a loss of filamentous actin, which preceded cytotoxicity. Western blots showed that a concentration-dependent decrease in the phosphorylation of cofilin and a decrease in LIMK-1 were induced by A 1254. We concluded that PCBs induced actin depolymerization in hippocampal neurons, probably by inhibiting the LIMK-1/cofilin signaling pathway. The above findings offer new perspectives for the understanding of PCBs-induced learning and memory deficits.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700