Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro
详细信息查看全文 | 推荐本文 |
摘要
Silk-based materials have been used in the field of bone or ligament tissue engineering. In order to explore the feasibility of using purified silk fibroin to construct artificial nerve grafts, it is necessary to evaluate the biocompatibility of silk fibroin material with peripheral nerve tissues and cells. We cultured rat dorsal root ganglia (DRG) on the substrate made up of silk fibroin fibers and observed the cell outgrowth from DRG during culture by using light and electron microscopy coupled with immunocytochemistry. On the other hand, we cultured Schwann cells from rat sciatic nerves in the silk fibroin extract fluid and examined the changes of Schwann cells after different times of culture. The results of light microscopy, MTT test and cell cycle analysis showed that Schwann cells cultured in the silk fibroin extract fluid showed no significant difference in their morphology, cell viability and proliferation as compared to that in plain L15 medium. Furthermore, no significant difference was found in expression of the factors secreted by Schwann cells, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and S-100, between Schwann cells cultured in the silk fibroin extraction fluid and in plain L15 medium by the aid of immunocytochemistry, RT-PCR and Western analysis. Collectively, these data indicate that silk fibroin has good biocompatibility with DRG and is also beneficial to the survival of Schwann cells without exerting any significant cytotoxic effects on their phenotype or functions, thus providing an experimental foundation for the development of silk fibroin as a candidate material for nerve tissue engineering applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700