Synthesis, thermal and mechanical properties of benzocyclobutene-functionalized siloxane thermosets with different geometric structures
详细信息查看全文 | 推荐本文 |
摘要
A series of benzocyclobutene-functionalized siloxane thermosets were prepared to investigate the relationship between the monomer鈥檚 chemical structure and the properties of the corresponding polymer. Monomer 1,1,3,3-tetramethyl-1,3-bis[2鈥?(4鈥?benzocyclobutenyl)]vinyldisiloxane (DVS-BCB) and 1,3,5,7-tetramethyl-1,3,5,7-tetra[2鈥?(4鈥?benzocyclobutenyl)]vinylcyclotetrasiloxane (CYC-BCB) were synthesized by Heck reaction. Copolymer Poly(DVS-BCB-co-POSS) was obtained through incorporating octavinyl-T8-silsesquioxane (Vinyl-POSS) into DVS-BCB matrix via Diels-Alder reaction. The oligomers, P-DVS-BCB, P-CYC-BCB and P-Poly(DVS-BCB-co-POSS), were obtained by refluxing the mesitylene solution of the BCB monomers at the BCB ring opening temperature. The BCB monomers and oligomers showed a similar curing behavior with an exothermic peak temperature near 260 掳C. The curing kinetic parameters, the apparent activation energy (Ea), the frequency factor (A) and the reaction order (n), were obtained by non-isothermal DSC method. The BCB polymers possessed good thermal stability (Td > 450 掳C in N2). Due to the highly crosslinked network structure, CYC-BCB polymer exhibited higher glass transition temperature, higher modulus and lower coefficient of thermal expansion than DVS-BCB and Poly(DVS-BCB-co-POSS) polymers. Moreover, the BCB polymers also demonstrated low dielectric constants (<2.8 at 1 MHz) and low water absorptions. The films prepared from the BCB oligomer solution showed a well planarization (root-mean-square roughness <0.5 nm).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700