A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics
详细信息查看全文 | 推荐本文 |
摘要
A study on the mechanical properties of polyethylene and carbon nanotube (CNT) based composites is presented using molecular mechanics simulations. The systems being investigated consist of amorphous as well as crystalline polyethylene (PE) composites with embedded single-walled CNTs. All the systems are subjected to quasi-static tensile loading, with the assumption that no cross-link chemical bonds exist between the CNT and polyethylene matrix in the case of nanocomposites. Based on the numerical simulations, we report Young’s moduli (C33) of 212–215 GPa for crystalline PE, which closely match the experimental measurement. Furthermore, elastic stiffness of 3.19–3.69 GPa and tensile strength of 0.21–0.25 GPa are obtained for amorphous PE. The tensile responses are found to be highly isotropic. In the case of crystalline PE reinforced by long through CNTs, moderate improvements in the tensile strength and elastic stiffness are observed. However, the results differ from the predictions using the rule of mixtures. On the other hand, although significant increase in the overall tensile properties is observed when amorphous PE is reinforced by long through CNTs, the load transfer at the nanotube/polymer interface has negligible effect. Finally, degradations in both tensile strength and elastic stiffness are reported when amorphous PE is reinforced by embedded CNTs. The study presented indicates the importance of specific CNT and polymer configurations on the overall properties of the nanocomposite.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700