Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice
详细信息查看全文 | 推荐本文 |
摘要
Conditional double knock-out of presenilin-1 (PS1) and presenilin-2 (PS2) (PS cDKO) in forebrain of mice led to progressive memory dysfunction and forebrain degeneration. These changes in the brain recapitulated most of the neurodegenerative phenotypes of Alzheimer's disease (AD). Oxidative stress in brain tissues is intimately related to AD. In this report, we examined oxidative stress status in cerebral cortex in 2-, 4- and 7-month PS cDKO and the age- and gender-matched control mice (WT). Lipid peroxidation (MDA as the measure) and protein oxidation (protein carbonyl as the measure) were found to be significantly increased in PS cDKO mice over the age points examined, notably in those at 2-month, suggesting that oxidative stress is an early event in response to PS loss-of-function. The oxidative modification of cortical proteins was further confirmed by Oxyblot assay. The investigations into endogenous antioxidant defense (CAT, SOD and GSH-px as measures) revealed a compensatory defense against oxidative stress, particularly at the early age stage, in PS cDKO mice. The expression level of cortical glial fibrillary acidic protein (GFAP) increased in an age-related manner, in particular in 2-month PS cDKO mice, suggesting that the interaction relationship between oxidative stress and inflammatory response may be closely associated with the underlying loss-of-function pathogenesis of AD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700