First-principles study on the strain effect of the Cu(0 0 1)-c(2×2)N self-organized structure
详细信息查看全文 | 推荐本文 |
摘要
Nitrogen atoms adsorbed on Cu(0 0 1) surface are known to form a self-organized structure, in which islands of nitrogen-adsorbed region are arranged into a square lattice. To clarify the mechanism of the self-organization, the strain effect in this surface is investigated by first-principles theoretical calculations. The difference between the calculated surface stress of Cu(0 0 1)- Formula Not Shown N surface and that of clean Cu(0 0 1) surface is in good agreement with the value estimated from experiments. In the stripe model of the self-organized surface, the top-most Cu atoms are largely displaced in lateral directions, while the nitrogen atoms at the edge of its nitrogen-adsorbed region slightly protrude in the surface normal. These results are consistent with observations. Spontaneous formation of the clean Cu region is also confirmed by calculating the formation energy within the stripe model. The formation energy is fitted well by a function deduced from the theory of elasticity. Nevertheless, the parameter of the fitting cannot be explained only by the difference of the surface stresses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700