Detecting proton flux across chromatophores driven by F0F1-ATPase using N-(fluorescein-5-thiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt
详细信息查看全文 | 推荐本文 |
摘要
N-(Fluorescein-5-thiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt (F-DHPE) is a lipid fluorescence dye sensitive to pH changes and is used in this study for detecting proton flux through F0F1-ATPase within chromatophores driven by ATP hydrolysis. F-DHPE is easily labeled to the outer surface of chromatophores. In the range of pH 7.0 to 9.0, fluorescence intensity is sensitive to pH changes. The sensitivity is especially great in the range of pH 8.2 to 9.0, so pH 8.6 was chosen as the appropriate experimental condition. It is shown that added ATP not only acts as a fluorescence quencher but also can be hydrolyzed by F0F1-ATPase to pump protons into chromatophores, resulting in fluorescence restoration. A stimulator (NaSO3) and various types of inhibitors (NaN3, 5′-adenylyl imidodiphosphate [AMP–PNP], and N,N′-dicyclohexylcarbodiimide [DCCD]) of F0F1 confirmed that fluorescence restoration is caused by ATP-driven proton flux. When loaded with one antibody (anti-β antibody) or two antibodies (anti-β antibody and sheep to rabbit second antibody), F0F1-ATPase exhibits lower proton pumping activities, as indicated by fluorescence restoration. The possible mechanism of the inhibition of antibodies on proton pumping activity is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700