Innovative processing of high-strength and low-cost ferritic steels strengthened by Y-Ti-O nanoclusters
详细信息查看全文 | 推荐本文 |
摘要
Nanostructured ferritic alloys (NFAs) have been essentially fabricated by mechanical alloying pre-alloyed ferritic powders with Y2O3. In this work, Y2O3 was replaced by Y hydride and more soluble Fe2O3 to prepare NFAs. The microstructural characterization concerning the formation of nanoparticles and mechanical property of NFAs prepared by the novel process were investigated. It is found, during mechanical alloying both Fe2O3 and hydride can be easily dissolved into the ferritic matrix. Coherent Y-Ti-O nanoparticles with a pyrochlore Y2Ti2O7 structure and incoherent Cr-rich oxides were precipitated after the hot consolidation. With an increased milling time, there exists a shift of oxygen from the Cr-rich oxides to Y-Ti-O nanoparticles, resulting in a significantly homogeneous dispersion of nanoparticles. Compared with 14YWT, the NFAs in this work show a combination of high strength and improved ductility. Thus, the addition of Fe2O3 as an oxygen carrier provides an alternate way to adjust the oxygen content, which does not require high energy milling; and the combination of hot forging and hot rolling processes, rather than the hot extrusion are more cost-effective.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700