Rapid generation of entry trajectories with waypoint and no-fly zone constraints
详细信息查看全文 | 推荐本文 |
摘要
Waypoints are positions for multiple payload deployments or reconnaissance missions, and no-fly zones are exclusion zones that cannot be passed for threat avoidance or due to geopolitical restrictions. This paper proposes a rapid entry trajectory generation approach satisfying waypoint and no-fly zone constraints for entry vehicles with relatively high lift-to-drag ratio. A lateral planning algorithm based on a Newton iteration scheme is developed to simultaneously design both the magnitude and sign of the control variable according to waypoints and no-fly zones. The algorithm converts the highly constrained trajectory planning problem into a series of one-parameter search problems based on a reduced-order system. Then, the quasi-equilibrium glide phenomenon is employed to extract the remaining state variables corresponding to longitudinal motion. The algorithm is tested using the Common Aero Vehicle model, and the results demonstrate that the algorithm can generate flyable entry trajectories rapidly within allowable tolerances while satisfying all the flight constraints.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700