Co3O4 nanowires as high capacity anode materials for lithium ion batteries
详细信息查看全文 | 推荐本文 |
摘要
Co3O4 nanowires were synthesized from the decomposition of CoC2O4路2H2O nanowires which were obtained through a polyvinyl alcohol (PVA)-assisted solution-based precipitation process. And the formation mechanism of CoC2O4路2H2O nanowires was discussed. The Co3O4 nanowires had diameters in the range of 30-60 nm and lengths of several micrometers, inheriting the morphology of the CoC2O4路2H2O nanowires. The Co3O4 nanowires as an anode material in lithium-ion batteries exhibited a stable specific discharge/charge capacity of 611 mAh/g and 598 mAh/g after fifty cycles at a current density of 0.11 A/g, which were much higher than that of commercial Co3O4 nanoparticles. In addition, the charge capacity of the as-synthesized Co3O4 nanowires was more than two times higher than that of the commercial Co3O4 nanoparticles at a current density of 1.1 A/g. These results indicate that the as-prepared Co3O4 nanowires have potential to be a promising candidate as high capacity anode material in the next generation lithium-ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700