Low temperature neutron irradiation effects on microstructure and tensile properties of molybdenum
详细信息查看全文 | 推荐本文 |
摘要
Polycrystalline molybdenum was irradiated in the hydraulic tube facility at the High Flux Isotope Reactor to doses ranging from 7.2 × 10−5 to 0.28 dpa at not, vert, similar80 °C. As-irradiated microstructure was characterized by room-temperature electrical resistivity measurements, transmission electron microscopy (TEM) and positron annihilation spectroscopy (PAS). Tensile tests were carried out between −50 and 100 °C over the strain rate range 1 × 10−5 to 1 × 10−2 s−1. Fractography was performed by scanning electron microscopy (SEM), and the deformation microstructure was examined by TEM after tensile testing. Irradiation-induced defects became visible by TEM at not, vert, similar0.001 dpa. Both their density and mean size increased with increasing dose. Submicroscopic three-dimensional cavities were detected by PAS even at not, vert, similar0.0001 dpa. The cavity density increased with increasing dose, while their mean size and size distribution was relatively insensitive to neutron dose. It is suggested that the formation of visible dislocation loops was predominantly a nucleation and growth process, while in-cascade vacancy clustering may be significant in Mo. Neutron irradiation reduced the temperature and strain rate dependence of the yield stress, leading to radiation softening in Mo at lower doses. Irradiation had practically no influence on the magnitude and the temperature and strain rate dependence of the plastic instability stress.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700