Nuclear and incommensurate magnetic structure of NaFeGe2O6 between 5聽K and 298聽K and new data on multiferroic NaFeSi2O6
详细信息
下载全文
推荐本文 |
摘要
The compound NaFeGe2O6 was grown synthetically as polycrystalline powder and as large single crystals suitable for X-ray and neutron-diffraction experiments to clarify the low temperature evolution of secondary structural parameters and to determine the low temperature magnetic spins structure. NaFeGe2O6 is isotypic to the clinopyroxene-type compound aegirine and adopts the typical HT-C2/c clinopyroxene structure down to 2.5 K. The Na-bearing M2 polyhedra were identified to show the largest volume expansion between 2.5 K and room temperature, while the GeO4 tetrahedra behave as stiff units. Magnetic susceptibility measurements show a broad maximum around 33 K, which marks the onset of low-dimensional magnetic ordering. Below 12 K NaFeGe2O6 transforms to an incommensurately modulated magnetic spin state, with k = [0.323, 1.0, 0.080] and a helical order of spins within the M1-chains of FeO6 octahedra. This is determined by neutron-diffraction experiments on a single crystal. Comparison of NaFeGe2O6 with NaFeSi2O6 is given and it is shown that the magnetic ordering in the latter compound, aegirine, also is complex and is best described by two different spin states, a commensurate one with C2′/c′ symmetry and an incommensurate one, best being described by a spin density wave, oriented within the (1 0 1) plane.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700