Improved DAE formulation for inverse dynamics simulation of cranes
详细信息
下载全文
推荐本文 |
摘要
Cranes are underactuated systems with less control inputs than degrees of freedom. Dynamics and control of such systems is a challenging task, and the existence of solution to the inverse dynamics simulation problem in which an r-degree-of-freedom system with m actuators, m<r, is subject to m specified motion task (servo-constraints) is conditioned upon the system is differentially flat (all the system states and control inputs can be algebraically expressed in terms of the outputs and their time derivatives up to a certain order). The outputs are often designed as specified in time load coordinates to model a rest-to-rest maneuver along a trajectory in the working space, from the initial load position to its desired destination. The flatness-based methodology results then in the required control inputs determined in terms of the fourth time derivatives of the imposed outputs, and the derivations are featured by substantial complexity. The DAE formulation motivated in this contribution offers a more convenient approach to the prediction of dynamics and control of cranes executing prescribed load motions, and only the second time derivatives of the specified outputs are involved. While most of the inverse simulation formulations, both flatness-based and DAE ones, are performed using independent state variables, the use of dependent coordinates and velocities may lead to substantial modeling simplifications and gains in computational efficiency. An improved DAE formulation of this type is presented in this paper.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700