Mycorrhizal induction of phenolic compounds and antioxidant properties of fungi and seedlings during the early steps of symbiosis
详细信息
下载全文
推荐本文 |
摘要
Ectomycorrhizal (ECM) symbiosis plays a major role in nutrient cycling and the functioning of forest ecosystems. Trees with well-developed ectomycorrhizas are more resistant to environmental stresses such as drought and to biotic stresses such as root pathogens. The establishment of ECM symbiosis is triggered by signals produced by both partners. These signals lead to morphological changes and a complex development of specific structures in both the plant root and the fungus. The development of the ECM fungi, Paxillus involutus and Pisolithus arhizus, in the presence and the absence of the symbiont—Pinus pinaster—was evaluated as well as their antioxidant properties and phenolic compounds composition in response to the symbiotic association. ECM fungi grew less in the presence of P. pinaster, with P. arhizus being less affected in growth and thus being more adapted to this association. Protocatechuic acid was found only in P. involutus, while P. pinaster roots, both in association and isolated, proved to have other phenolic acids, such as p-hydroxybenzoic and p-coumaric acids. The symbiosis between P. involutus and P. pinaster had no major effects on the symbionts, while the association between P. arhizus and P. pinaster seems to generally decrease the antioxidant effects of both symbionts, despite the increase in p-coumaric and cinnamic acids in the ECM fungi.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700