Exploiting interleaving semantics in symbolic state-space generation
详细信息
下载全文
推荐本文 |
摘要
Symbolic techniques based on Binary Decision Diagrams (BDDs) are widely employed for reasoning about temporal properties of hardware circuits and synchronous controllers. However, they often perform poorly when dealing with the huge state spaces underlying systems based on interleaving semantics, such as communications protocols and distributed software, which are composed of independently acting subsystems that communicate via shared events. This article shows that the efficiency of state-space exploration techniques using decision diagrams can be drastically improved by exploiting the interleaving semantics underlying many event-based and component-based system models. A new algorithm for symbolically generating state spaces is presented that (i) encodes a model’s state vectors with Multi–valued Decision Diagrams (MDDs) rather than flattening them into BDDs and (ii) partitions the model’s Kronecker–consistent next–state function by event and subsystem, thus enabling multiple lightweight next–state transformations rather than a single heavyweight one. Together, this paves the way for a novel iteration order, called saturation, which replaces the breadth–first search order of traditional algorithms. The resulting saturation algorithm is implemented in the tool SMART, and experimental studies show that it is often several orders of magnitude better in terms of time efficiency, final memory consumption, and peak memory consumption than existing symbolic algorithms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700