Electrogenic H+ Transport and pH Gradients Generated by a V-H+-ATPase in the Isolated Perfused Larval Drosophila Midgut
详细信息
下载全文
推荐本文 |
摘要
A method for microperfusion of isolated segments of the midgut epithelium of Drosophila larvae has been developed to characterize cellular transport pathways and membrane transporters. Stereological ultrastructural morphometry shows that this epithelium has unusually long tight junctions, with little or no lateral intercellular volume normally found in most epithelia. Amplification of the apical and basal aspects of the cells, by ≈ 17-fold and ≈ 7-fold, respectively, predicts an almost exclusively transcellular transport system for solutes. This correlates with the high lumen-negative transepithelial potential (Vt) of 38 to 45 mV and high resistance (Rt) of 800 to 1400 Ω • cm2 measured by terminated cable analysis, in contrast to other microperfused epithelia like the renal proximal tubule. Several blockers (amiloride 10−4 M, ouabain 10−4 M, bumetanide 10−4 M), K+-free solutions, or organic solutes such as D-glucose 10 mM or DL-alanine 0.5 mM failed to affect Vt or Rt. Bafilomycin-A1 (3 to 5 μM) decreased Vt by ≈ 40%and short-circuit current (Isc) by ≈ 50%, and decreased intracellular pH when applied from the basal side only, consistent with an inhibition of an electrogenic V-H+-ATPase located in the basal membrane. Gradients of H+ were detected by pH microelectrodes close to the basal aspect of the cells or within the basal extracellular labyrinth. The apical membrane is more conductive than the basal membrane, facilitating secretion of base (presumably HCO3−), driven by the basal V-H+-ATPase.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700