The Moving Plane Inhomogeneity Boundary with聽Transformation Strain
详细信息
下载全文
推荐本文 |
摘要
Within the context of linear elastodynamics, the radiated fields (including inertia) for a plane inhomogeneous inclusion boundary with transformation strain (or eigenstrain), moving in general motion under applied loading, have been obtained on the basis of Eshelby’s equivalent inclusion method, by using the strain field of a moving homogeneous inclusion boundary previously obtained. This dynamic strain field, obtained from the dynamic Green’s function (for an isotropic material), is unique, and has as initial condition the limit of the spherical Eshelby inclusion, as the radius tends to infinity, which is the minimum energy solution for the half-space inclusion. With the equivalent dynamic eigenstrain (which is dependent on the velocity of the boundary), the radiated fields for the inhomogeneous plane inclusion boundary can be obtained, and from them the driving force on the moving boundary can be computed, consisting of a self-force (which is the rate of mechanical work (including inertia) required to create an incremental region of inhomogeneity with eigenstrain), and of a Peach-Koehler force associated with the external loading. While for an expanding plane homogeneous inclusion boundary the Peach-Koehler force is independent of the boundary velocity, in the case of an inhomogeneous one it is not.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700