Water resources planning and management based on system dynamics: a case study of Yulin city
详细信息
下载全文
推荐本文 |
摘要
Water security is an integral aspect of the socio-economic development in China. Nevertheless, water resources are under persistent pressures because of the growing population, heavy irrigation, climate change effects and short-term policies. Traditional management approaches narrowly focus on increasing supply and reducing demand without considering the complex interactions and feedback loops that govern water resource behaviour. Whereas these approaches may provide quick fix solutions, they often lead to unanticipated, sometimes catastrophic, delayed outcomes. Therefore, water management needs to take a holistic approach that caters to the interdependent physical (e.g. water inflows, outflows) and behavioural (e.g. decision rules, perceptions) processes in the system. Unlike reductionist approaches, System Dynamics (SD) takes a system-level view for modelling and analysing the complex structure (cause–effect relationships, feedback loops, delays) that generates the systemic behaviour. Simulating the SD model allows assessing long-term system-wide impacts, exploring leverage points and communicating results to decision makers. In this paper, we follow an SD modelling approach to examine the future of water security in Yulin City. First, we present a conceptual model for integrating water supply and demand. Based on this, we build an SD model to simulate and analyse the dynamics of water resource over time. The model output is tested to ensure that it satisfactorily replicates the historical behaviour of the system. The model is used to quantitatively assess the effectiveness of various supply/demand management options. Three scenarios are designed and examined: business-as-usual, supply management, and demand management. Results show that current management regime cannot effectively meet the future water demand. Whereas supply acquisition provides short-term benefits, it cannot cope with the growing population. A combination of conservation measures and demand-management instruments is regarded the most effective strategy for balancing supply and demand.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700