Mechanism of the olivine鈥搑ingwoodite transformation in the presence of aqueous fluid
详细信息
下载全文
推荐本文 |
摘要
The mechanism of the high pressure transformation of olivine in the presence of aqueous fluid was investigated by high pressure experiments conducted nominally at the wadsleyite + ringwoodite stability field at 14.5 GPa and 700 and 800掳C. The microstructures of recovered samples were observed using an analytical transmission electron microscope (ATEM) for which foils were prepared using a focused ion beam technique. Glass films approximately 1 μm in width always occupied the interface between olivine and hydrous ringwoodite. ATEM measurements showed that the chemical compositions of the glass films had approximately the same Mg/Fe ratio as that of olivine, but a higher Si content. Micro-structural and -chemical observations suggest that these glass films formed as quenched glass from the aqueous fluid dissolving olivine and that hydrous ringwoodite was crystallized from the fluid. This indicates that the transformation of olivine to hydrous ringwoodite was prompted by the dissolution–reprecipitation process. The dissolution–reprecipitation process is considered an important mineral replacement mechanism in the Earth’s crust by which one mineral is replaced by a more stable phase or phases. However, this process has not previously been reported for deep mantle conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700