Physiological characterization and light response of the CO2-concentrating mechanism in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696
详细信息
下载全文
推荐本文 |
摘要
We studied the interactions of the CO2-concentrating mechanism and variable light in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696 acclimated to low light (15 μmol m−2 s−1 PPFD) and low inorganic carbon (50 μM Ci). Mass spectrometric and polarographic analysis revealed that mediated CO2 uptake along with both active Na+-independent and Na+-dependent HCO3 − transport, likely through Na+/HCO3 − symport, were employed to concentrate Ci internally. Combined transport of CO2 and HCO3 − required about 30 kJ mol−1 of energy from photosynthetic electron transport to support an intracellular Ci accumulation 550-fold greater than the external Ci. Initially, Leptolyngbya rapidly induced oxygen evolution and Ci transport to reach 40–50%of maximum values by 50 μmol m−2 s−1 PPFD. Thereafter, photosynthesis and Ci transport increased gradually to saturation around 1,800 μmol m−2 s−1 PPFD. Leptolyngbya showed a low intrinsic susceptibility to photoinhibition of oxygen evolution up to PPFD of 3,000 μmol m−2 s−1. Intracellular Ci accumulation showed a lag under low light but then peaked at about 500 μmol photons m−2 s−1 and remained high thereafter. Ci influx was accompanied by a simultaneous, light-dependent, outward flux of CO2 and by internal CO2/HCO3cycling. The high-affinity and high-capacity CCM of Leptolyngbya responded dynamically to fluctuating PPFD and used excitation energy in excess of the needs of CO2 fixation by increasing Ci transport, accumulation and Ci cycling. This capacity may allow Leptolyngbya to tolerate periodic exposure to excess high light by consuming electron equivalents and keeping PSII open.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700