Gaussian radial‐basis functions: Cardinal interpolation of \ell^p and power‐growth data
详细信息
下载全文
推荐本文 |
摘要
Suppose \lambda is a positive number. Basic theory of cardinal interpolation ensures the existence of the Gaussian cardinal function L_\lambda (x)=\sum_{k\in\mathbb{Z}} c_k \exp({-}\lambda(x-k)^2), x\in\mathbb{R}, satisfying the interpolatory conditions L_\lambda (j)=\delta_{0j}, j\in\mathbb{Z}. The paper considers the Gaussian cardinal interpolation operator (\mathcal{L}_\lambda \mathbf{y})(x):=\sum_{k\in\mathbb{Z}} y_k L_\lambda (x-k), \quad \mathbf{y}=(y_k)_{k\in\mathbb{Z}}, \ x\in\mathbb{R}, as a linear mapping from \ell^p(\mathbb{Z}) into L^p(\mathbb{R}), 1\leq p< \infty, and in particular, its behaviour as \lambda\to0^+. It is shown that \Vert \mathcal{L}_\lambda \Vert _p is uniformly bounded (in \lambda) for 1, and that \Vert \mathcal{L}_\lambda \Vert _1\asymp \log(1/\lambda) as \lambda\to0^+. The limiting behaviour is seen to be that of the classical Whittaker operator \mathcal{W}\dvtx \mathbf{y}\mapsto \sum_{k\in\mathbb{Z}} y_k\,{\sin\pi(x-k) \over \pi(x-k)}, in that \lim_{\lambda\to0^+}\Vert \mathcal{L}_\lambda \mathbf{y}-\mathcal{W}\mathbf{y}\Vert _p=0, for every \mathbf{y}\in\ell^p(\mathbb{Z}) and 1. It is further shown that the Gaussian cardinal interpolants to a function f which is the Fourier transform of a tempered distribution supported in ({-}\pi,\pi) converge locally uniformly to f as \lambda\to0^+. Multidimensional extensions of these results are also discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700