Comparison between Generalized-Born and Poisson–Boltzmann methods in physics-based scoring functions for protein structure prediction
详细信息
下载全文
推荐本文 |
摘要
Continuum solvent models such as Generalized-Born and Poisson–Boltzmann methods hold the promise to treat solvation effect efficiently and to enable rapid scoring of protein structures when they are combined with physics-based energy functions. Yet, direct comparison of these two approaches on large protein data set is lacking. Building on our previous work with a scoring function based on a Generalized-Born (GB) solvation model, and short molecular-dynamics simulations, we further extended the scoring function to compare with the MM-PBSA method to treat the solvent effect. We benchmarked this scoring function against seven publicly available decoy sets. We found that, somewhat surprisingly, the results of MM-PBSA approach are comparable to the previous GB-based scoring function. We also discussed the effect to the scoring function accuracy due to presence of large ligands and ions in some native structures of the decoy sets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700