Signal assignments and chemical-shift structural analysis of uniformly 13C, 15N-labeled peptide, mastoparan-X, by multidimensional solid-state NMR under magic-angle spinning
详细信息
下载全文
推荐本文 |
摘要
Carbon-13 and nitrogen-15 signals of fully isotope-labeled 15-residue peptide, glycinated mastoparan-X, in a solid state were assigned by two- and three-dimensional NMR experiments under magic-angle spinning conditions. Intra-residue spin connectivities were obtained with multidimensional correlation experiments for C–C–C and N–C–C. Sequence specific assignments were performed with inter-residue C–C and N–CC correlation experiments. Pulse sequences for these experiments have mixing periods under recoupled zero- and double-quantum 13C–13C and 15N–13C dipolar interactions. These correlation spectra allowed the complete assignments of 13C and 15N backbone and 13C signals. Chemical shift analysis of the 13C and 15N signals based on empirical and quantum chemical databases for proteins indicated that the backbone between residues 3 and 14 forms -helix and residue 2 has extended conformation in the solid state. This structure was compared with the G-protein- and membrane-bound structures of mastoparan-X.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700