用户名: 密码: 验证码:
Tsunami mitigation by coastal vegetation considering the effect of tree breaking
详细信息
下载全文
推荐本文 |
摘要
Damage to vegetation by tsunami moment and reduction of potential tsunami force are discussed based on a numerical simulation. A numerical model based on two-dimensional nonlinear long-wave equations that include drag forces and turbulence-induced shear force due to the presence of vegetation was developed to estimate tree breaking. The numerical model was then applied to a coastal forest where two dominant tropical vegetation species, Pandanus odoratissimus and Casuarina equisetifolia, were considered. The threshold water depth for tree breaking increased with increasing forest width, and the analysis was consistent with the field investigation results that the critical tsunami water depth for breaking is around 80%of the tree height for P. odoratissimus. C. equisetifolia is stronger than P. odoratissimus against tsunami action, but P. odoratissimus can reduce a greater tsunami force than C. equisetifolia due to its complex of aerial root structures. Even if breakage occurs, P. odoratissimus still has high potential to reduce the tsunami force due to its dense aerial root structures. Previous numerical models that do not include the breaking phenomena may overestimate the vegetation effect for reducing tsunami force. The combination of P. odoratissimus and C. equisetifolia is recommended as a vegetation bioshield to protect coastal areas from tsunami hazards.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700