Database of sail shapes versus sail performance and validation of numerical calculations for the upwind condition
详细信息
下载全文
推荐本文 |
摘要
A database of full-scale three-dimensional sail shapes is presented with the aerodynamic coefficients for the upwind condition of International Measurement System (IMS) type sails. Three-dimensional shape data are used for the input of numerical calculations and the results are compared with the measured sail performance. The sail shapes and performance were measured using sail dynamometer boat Fujin. This is a boat of 10.3-m length overall in which load cells and CCD cameras were installed to simultaneously measure the sail forces and shapes. At the same time, the sailing conditions of the boat, e.g., boat speed, heel angle, wind speed, and wind angle, were measured. The sail configurations tested were: mainsail with 130%jib, mainsail with 75%jib, and mainsail alone. Sail shapes were measured at several vertical positions for the shape parameters defined by: chord length, maximum draft, maximum draft position, entry angle at the luff, and exit angle at the leech, all of which finally yield three-dimensional coordinates of the sail geometry. The tabulated shape data, along with aerodynamic coefficients, are presented in this article. In addition, numerical flow simulations were performed for the measured sail shapes and the sailing conditions to investigate the capability and limitations of the methods through detailed comparison with the measurements. Two numerical methods were used: a vortex lattice method (VLM) and a Reynolds-averaged Navier–Stokes (RANS)-based computational fluid dynamics method. The sail shape database, in association with the numerical results, provides a good benchmark for the sail performance analysis of the upwind condition of IMS type sails.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700