基于MRT的喀纳斯泰加林火成演替群落数量分类
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative classification of Kanas taiga communities along the pyrogenic succession using multivariate regression trees
  • 作者:郭珂 ; 潘存德 ; 李贵华 ; 余戈壁 ; 张帆 ; 刘博 ; 邹卓颖 ; 刘晓菊
  • 英文作者:GUO Ke;PAN Cun-de;LI Gui-hua;YU Ge-bi;ZHANG Fan;LIU Bo;ZOU Zhuo-ying;LIU Xiao-ju;College of Forestry and Horticulture,Xinjiang Agricultural University/Key Laboratory of Forest Ecology and Industry Technology in Arid Region,Education Department of Xinjiang;Forestry Department of Xinjiang Uygur Autonomous Region;Kanas National Nature Reserve;
  • 关键词:泰加林 ; 火成演替 ; 群落 ; 火烈度 ; 多元回归树
  • 英文关键词:taiga;;pyrogenic succession;;community;;fire severity;;multivariate regression tree(MRT)
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:新疆农业大学林学与园艺学院/新疆教育厅干旱区林业生态与产业技术重点实验室;新疆维吾尔自治区林业厅;喀纳斯国家自然保护区;
  • 出版日期:2019-03-27 10:37
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.311
  • 基金:国家自然科学基金项目(31570634);; 新疆自治区财政林业科技项目(新林科字〔2016〕599号-30)资助
  • 语种:中文;
  • 页:STXZ201906037
  • 页数:11
  • CN:06
  • ISSN:21-1148/Q
  • 分类号:319-329
摘要
以喀纳斯国家自然保护区科学实验区未受人为干扰的可识别的火成演替泰加林群落为研究对象,采用典型样地调查法,运用地形因子、火干扰因子、土壤因子和物种重要值为变量的典范对应分析(CCA)方法和多元回归树(MRT)方法,分析物种分布格局的影响因子及群落类型和特征,以期加深对泰加林火成演替群落的科学认识。结果表明:喀纳斯泰加林植被共有维管束植物172种,隶属43科125属,其中乔木7种,灌木19种,草本植物146种。影响喀纳斯泰加林火成演替群落物种分布格局的主要因子是地形因子的海拔、土壤因子的全钾含量、火干扰因子的火烈度和火后时间。MRT方法将喀纳斯泰加林火成演替群落划分为6个群落类型,即:①疣枝桦(Betula pendula)+西伯利亚云杉(Picea obovata)-红果越橘(Vaccinium hirtum)-黑穗苔草(Carex atrata)+老芒麦(Elymus sibiricus)群落;②疣枝桦+西伯利亚云杉-红果越橘+大叶绣线菊(Spiraea chamaedryfolia)-黑穗苔草群落;③西伯利亚落叶松(Larix sibirica)+疣枝桦-红果越橘+密刺蔷薇(Rosa spinosissima)-黑穗苔草+寄奴花(Eremosyne pectinata)群落;④西伯利亚红松(Pinus sibirica)+西伯利亚落叶松-红果越橘+林奈木(Linnaes boealis)-老芒麦+寄奴花群落;⑤西伯利亚落叶松-红果越橘+阿尔泰忍冬(Lonicera caerulea)-细叶野豌豆(Vicia tenuifolia)+老芒麦群落;⑥西伯利亚落叶松+西伯利亚云杉-红果越橘-老芒麦+黑穗苔草群落。喀纳斯泰加林火成演替群落物种分布格局是地形因子、土壤因子和火干扰因子三者共同作用的结果,其中海拔、火烈度和火后时间是影响群落类型形成的关键因子。
        To understand the mechanism and process of taiga along the pyrogenic succession in Kanas,Xinjiang,we investigated topography,soil,fire disturbance and species importance value by typical sampling method. The types and characteristics of taiga communities,as well as the factors influencing species distribution pattern,were analyzed using canonical correspondence analysis( CCA) and multivariate regression trees( MRT). The results showed that there are 172 species,125 genera and 43 families of vascular plant species in Kanas taiga. Based on life form,these species can be divided into 7 tree,19 shrub and 146 herbaceous species. Elevation,total potassium concentration,fire severity and post-fire time were the main factors affecting species distribution in Taiga forest along the pyrogenic succession. Communities can be classified into six categories using MRT in Kanas taiga:( 1) Betula pendula + Picea obovate-Vaccinium hirtum-Carex atrata + Elymus sibiricus community,( 2) B. pendula + P. obovate-V. hirtum + Spiraea chamaedryfolia-C. atrata community,( 3) Larix sibirica+B. pendula-V. hirtum+Rosa spinosissima-C. atrata+Eremosyne pectinata community,( 4) Pinus sibirica+L. sibirica-V. hirtum+Linnaes borealis-E. sibiricus+E. pectinata community,( 5) L. sibirica-V. hirtum+Lonicera caerulea-Vicia tenuifolia+E. sibiricus community,and( 6) L. sibirica + P. obovate-V. hirtum-E. sibiricus + C.atrata community. In conclusion,variation in species distribution of taiga along the pyrogenic succession was mainly determined by topography,soil and fire disturbance. Within the factors related to topography,soil and fire disturbance,altitude,fire severity and post-fire time were the key factors driving the formation and persistence of communities in Kanas taiga.
引文
鲍士旦.2010.土壤农化分析.北京:中国农业出版社.
    曹铭昌,周广胜,翁恩生.2005.广义模型及分类回归树在物种分布模拟中的应用与比较.生态学报,25(8):2031-2040.
    方精云,沈泽昊,崔海亭.2004.试论山地的生态特征及山地生态学的研究内容.生物多样性,12(1):10-19.
    孔健健,张亨宇,荆爽,等.2017.大兴安岭火后演替初期森林土壤磷的动态变化特征.生态学杂志,36(6):1515-1523.
    李帅峰,苏建荣,刘万德,等.2013.云南省思茅松林群落数量分类及物种多样性与自然环境的关系.生态学杂志,32(12):3152-3159.
    刘翠玲.2009.新疆喀纳斯森林景观美学质量形成机制与自然火干扰体制研究(博士学位论文).乌鲁木齐:新疆农业大学:55-96.
    娄安如.1998.天山中段山地植被的生态梯度分析及环境解释.植物生态学报,22(4):364-372.
    罗旭,贺红士,梁宇,等.2016.林火干扰对大兴安岭主要林分类型地上生物量预测的影响模拟研究.生态学报,36(4):1104-1114.
    倪宝龙,刘兆刚.2013.不同强度火干扰下盘古林场天然落叶松林的空间结构.生态学报,33(16):4975-4984.
    邱扬,张金屯.2000.DCCA排序轴分类及其在关帝山八水沟植物群落生态梯度分析中的应用.生态学报,20(2):199-206.
    沈泽昊,张新时,金义兴.2000.三峡大老岭森林物种多样性的空间格局分析及其地形解释.植物学报,42(6):620-627.
    孙家宝,胡海清.2010.大兴安岭兴安落叶松林火烧迹地群落演替状况.东北林业大学学报,38(5):30-33.
    孙家宝.2010.火干扰后大兴安岭兴安落叶松林群落动态研究(博士学位论文).哈尔滨:东北林业大学.
    唐志尧,方精云.2004.植物物种多样性的垂直分布格局.生物多样性,12(1):20-28.
    王华,陈莉,宋敏,等.2017.喀斯特常绿落叶阔叶混交林土壤磷钾养分空间异质性.生态学报,37(24):8285-8293.
    吴征镒.1995.中国植被.北京:科学出版社.
    薛欧,魏天兴,朱金兆.2016.环境因子对北京低山区低效林林下植被物种组成和丰富度的影响.生态学杂志,35(9):2321-2328.
    闫东峰,郭丹丹,杨喜田,等.2015.中度火干扰对具茨山典型植被草本植物早期恢复特征的影响.华中农业大学学报,34(5):31-36.
    杨永川,达良俊.2006.丘陵地区地形梯度上植被格局的分异研究概述.植物生态学报,30(3):504-513.
    余敏,周志勇,康峰峰,等.2013.山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释.植物生态学报,37(5):373-383.
    张明,黄金玲,杨铁.1989.哈纳斯自然保护区的土壤及其评价//潘文斗.中国自然保护区---哈纳斯科学考察.北京:中国林业出版社:28-37.
    Bansal S,Jochum T,Wardle DA,et al.2014.The interactive effects of surface-burn severity and canopy cover on conifer and broadleaf tree seedling ecophysiology.Canadian Journal of Forest Research,44:1032-1041.
    Beard JS.1955.The classification of tropical American vegetation-types.Ecology,36:89-100.
    Blanchet G,Libohova Z,Joost S,et al.2017.Spatial variability of potassium in agricultural soils of the canton of Fribourg,Switzerland.Geoderma,290:107-121.
    Borcard D,Legendre P,Drapeau P.1992.Partialling out the spatial component of ecological variation.Ecology,73:1045-1055.
    Clark DB,Palmer MW,Clark DA.1999.Edaphic factors and the landscape-scale distributions of tropical rain forest trees.Ecology,80:2662-2675.
    de Groot WJ,Cantin AS,Flannigan,MD,et al.2013.A comparison of Canadian and Russian boreal forest fire regimes.Forest Ecology and Management,294:23-34.
    de Klerk HM,Wilson AM,Steenkamp K.2011.Evaluation of satellite-derived burned area products for the fynbos,a Mediterranean shrubland.International Journal of Wildland Fire,21:36-47.
    De’Ath G.2002.Multivariate regression trees:A new technique for modeling species-environment relationships.Ecology,83:1105-1117.
    Feurdean A,Florescu G,Vannière B,et al.2017.Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene.Forest Ecology and Management,389:15-26.
    Gill AM.1981.Adaptive responses of Australian vascular plant species to fires//Gill AM,Groves RH,Noble IR,eds.Fire and the Australian Biota.Canberra:Australian Academy of Science:243-272.
    Gromstev A.2002.Natural disturbance dynamics in the boreal forest of European Russia:A review.Silva Fennica,36:41-55.
    Henriques RPB,Hay JD.1998.The plant communities of a foredune in southeastern Brazil.Canadian Journal of Botany,76:1323-1330.
    Lieberman D,Lieberman M,Peralta R.1996.Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica.Journal of Ecology,84:137-152.
    Lozano-García B,Parras-Alcantara L,Brevik EC.2016.Impact of topographic aspect and vegetation(native and reforested areas)on soil organic carbon and nitrogen budgets in Mediterranean natural areas.Science of the Total Environment,544:963-970.
    Mutch RW.1970.Wildland fires and ecosystems:A hypothesis.Ecology,51:1046-1051.
    Niboyet A,Brown JR,Dijkstra P,et al.2011.Global change could amplify fire effects on soil greenhouse gas emissions.PLo S ONE,6:e20105.
    Noble IR,Slatyer RO.1980.The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances.Vegetatio,43:5-21.
    Pereira P,CerdàA,Lopez AJ,et al.2016.Short-term vegetation recovery after a grassland fire in Lithuania:The effects of fire severity,slope position and aspect.Land Degradation and Development,27:1523-1534.
    Reichstein M,Bahn M,Ciais P,et al.2013.Climate extremes and the carbon cycle.Nature,500:287-295.
    Roberts DW,Cooper SV.1989.Concepts and techniques of vegetation mapping//Ferguson D,Morgan P,Johnson FD,eds.Land Classifications Based on Vegetation:Applications for Resource Management.General Technical Report INT-GTR-257.Ogden,UT:U.S.Department of Agriculture,Forest Service,Intermountain Forest and Range Experiment Station:90-96.
    Rowe JS.1983.Concepts of fire effects on plant individuals and species//Wein RW,MacLean DA,eds.The Role of Fire in Northern Circumpolar Ecosystems.New York:John Wiley and Sons:135-154.
    Scheiner SM,Willig MR.2011.The Theory of Ecology.Chicago:University of Chicago Press:318-372.
    Sharma CM,Baduni NP,Gairola S.2010.Effects of slope aspects on forest compositions,community structures and soil properties in natural temperate forests of Garhwal Himalaya.Journal of Forestry Research,21:331-337.
    Sterner RW,Ribic CA,Schatz GE.1986.Testing for life historical changes in spatial patterns of four tropical tree species.Journal of Ecology,74:621-633.
    ter Braak CJF.1986.Canonical correspondence analysis:A new eigenvector technique for multivariate direct gradient analysis.Ecology,67:1167-1179.
    Vayssières MP,Plant RE,Allen-Diaz BH.2000.Classification trees:An alternative non-parametric approach for predicting species distributions.Journal of Vegetation Science,11:679-694.
    Watt AS.1947.Pattern and process in the plant community.Journal of Ecology,35:1-22.
    Whittaker RH.1956.Vegetation of the Great Smoky Mountains.Ecological Monographs,26:1-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700