基于Lyapunov第二方法的自动导引车轨迹跟踪控制器设计与仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and simulation of trajectory tracking controller for automated guided vehicles based on Lyapunov's second method
  • 作者:杨勇生 ; 赵宏 ; 姚海庆
  • 英文作者:YANG Yongsheng;ZHAO Hong;YAO Haiqing;Institute of Logistics Science & Engineering,Shanghai Maritime University;
  • 关键词:港口 ; 自动导引车(AGV) ; 轨迹跟踪 ; Lyapunov第二方法
  • 英文关键词:port;;automated guided vehicle(AGV);;trajectory tracking;;Lyapunov's second method
  • 中文刊名:SHHY
  • 英文刊名:Journal of Shanghai Maritime University
  • 机构:上海海事大学物流科学与工程研究院;
  • 出版日期:2019-06-30
  • 出版单位:上海海事大学学报
  • 年:2019
  • 期:v.40;No.163
  • 基金:国家自然科学基金(61540045);; 上海市科学技术委员会重点项目(14170501500);; 上海海事大学研究生创新基金(2017ycx052)
  • 语种:中文;
  • 页:SHHY201902013
  • 页数:5
  • CN:02
  • ISSN:31-1968/U
  • 分类号:76-80
摘要
为实现港口运载设备的自动化,研究港口用自动导引车(automated guided vehicle,AGV)的轨迹跟踪控制问题。构建前轮转向、后轮驱动的AGV运动学模型,运用Lyapunov第二方法保证系统稳定。设计一种受非完整约束的AGV轨迹跟踪控制器。采用真实的AGV样车参数,对直线和圆弧轨迹跟踪进行仿真。仿真结果表明该控制器具有收敛速度快、跟踪误差小等特性。
        In order to realize the automation of carrier vehicles for ports,the trajectory tracking control of automated guided vehicles( AGVs) for ports is studied. The AGV kinematics model of front-wheel steering and rear-wheel drive is constructed,and the system stability is guaranteed by Lyapunov's second method. A trajectory tracking controller for AGVs with nonholonomic constraints is designed. Tracking trajectories composed of straight lines and arcs are simulated using parameters of AGV solid prototype.The simulation results show that the controller has the characteristics of fast convergence and low tracking error.
引文
[1]樊跃进.港口集装箱AGV自动搬运技术可行性浅析[J].港口装卸,2006(3):6-9.
    [2]谢德胜,徐友春,万剑,等.基于RTK-GPS的轮式移动机器人轨迹跟随控制[J].机器人,2017,39(2):221-229. DOI:10. 13973/j.cnki. robot. 2017. 0221.
    [3] AL-KHATIB E I,JARADAT M A,ABDEL-HAFEZ M,et al. Multiple sensor fusion for mobile robot localization and navigation using the Extended Kalman Filter[C]//10th International Symposium on Mechatronics and its Applications,January 5,2016,ISMA 2015. DOI:10. 1109/ISMA.2015. 7373480.
    [4]张庆,夏天,范轶飞,等.基于多传感器融合的运动目标跟踪算法[J].现代电子技术,2017,40(3):43-46. DOI:10. 16652/j. issn.1004-373x. 2017. 03. 012.
    [5] YANG Lu,YUE Ming,MA Teng,et al. Trajectory tracking control for 4WD vehicles using MPC and adaptive fuzzy control[C]//Proceedings of the 36th Chinese Control Conference(CCC),Dalian,China,July 26-28,2017:9367-9372.
    [6]邢艳荣,秦佳伟,苏彩云.基于自适应滑模控制的四轮全向移动机器人轨迹跟踪方法研究[J].机械传动,2015,39(12):39-43,52.DOI:10. 16578/j. issn. 1004. 2539. 2015. 12. 008.
    [7]李琳,任俊霖,邹焱飚,等.基于免疫遗传算法的移动机器人轨迹跟踪[J].华南理工大学学报(自然科学版),2013,41(7):13-18,25. DOI:10. 3969/j. issn. 1001-565X. 2013. 07. 003.
    [8]许亚芳,孙作雷,曾连荪,等.基于多次测量更新的移动机器人SLAM仿真[J].系统仿真学报,2015,27(6):1288-1293. DOI:10.16182/j. cnki. joss. 2015. 06. 020.
    [9]许亚芳,孙作雷,曾连荪,等.基于迭代观测更新的移动机器人视觉导航[J].信息与控制,2015,44(6):739-744,752. DOI:10.13976/j. cnki. xk. 2015. 0739.
    [10]许亚芳,孙作雷,曾连荪,等.基于激光扫描和迭代贝叶斯策略的定位[J].计算机工程与设计,2015,36(12):3333-3338. DOI:10.16208/j. issn. 1000-7024. 2015. 12. 033.
    [11] CUI Mingyue,LIU Wei,LIU Hongzhao. Unscented Kalman Filter-based adaptive tracking control for wheeled mobile robots in the presence of wheel slipping[C]//2016 12th World Congress on Intelligent Control and Automation(WCICA),Guilin,June 12-15,2016:3335-3340. DOI:10. 1109/WCICA. 2016. 7578636.
    [12] SENADHEERA S D A P,ABEYKOON A M H S. Sensorless terrain estimation for a wheeled mobile robot[C]//2017 IEEE International Conference on Industrial and Information Systems(ICIIS),Peradeniya,2017:1-6. DOI:10. 1109/ICIINFS. 2017. 8300422.
    [13] MAZULINA V,LITVINOV Y,BUSHUEV A. Developing a movement algorithm for a wheeled robot moving over a rough terrain[C]//2016 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops(ICUMT),Lisbon,2016:5-9. DOI:10. 1109/ICUMT. 2016. 7765224.
    [14]周波,戴先中,韩建达.基于激光扫描的移动机器人3D室外环境实时建模[J].机器人,2012,34(3):321-328,336. DOI:10. 3724/SP. J. 1218. 2012. 00321.
    [15] YIN Xiaohong,ZHAO Han. On a new sectionalized motion control strategy for automated guided vehicles:modeling and simulation validation[J].International Journal of Advanced Manufacturing Technology,2013,69:637-646.
    [16] ROJAS-CONTRERAS F G,CASTILLO-LOPEZ A I,FRIDMAN L,et al. Trajectory tracking using continuous sliding mode algorithms for differential drive robots[C]//2017 IEEE 56th Annual Conference on Decision and Control(CDC),Melbourne,Australia,VIC,2017:6027-6032.
    [17] ZDEˇSAR A,ˇSKRJANC I,KLANˇCAR G. Visual trajectory-tracking model-based control for mobile robots[J]. International Journal of Advanced Robotic Systems,2013,10:1. DOI:10. 5772/56757.
    [18]赵霞,姜玉宪,吴云洁,等.基于多模态滑模的快速非奇异终端滑模控制[J].北京航空航天大学学报,2011,37(1):110-113. DOI:10. 13700/j. bh. 1001-5965. 2011. 01. 027.
    [19]任孝平,蔡自兴.基于阿克曼原理的车式移动机器人运动学建模[J].智能系统学报,2009,4(6):534-537. DOI:10. 3969/j. issn. 1673-4785. 2009. 06. 011.
    [20]梁家荣,谭红艳,樊仲光.广义系统的快速终端滑模控制[J].电子科技大学学报,2011,40(1):11-15. DOI:10. 3969/j. issn.1001-0548. 2011. 01. 002.
    [21]中华人民共和国交通部.海港通用码头建设标准[S].北京:中华人民共和国交通部,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700