图像传感器像素化效应对菲涅耳非相干关联全息分辨率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of pixelation effect of image sensor on resolution of Fresnel incoherent correlation holography
  • 作者:潮兴兵 ; 潘鲁平 ; 王子圣 ; 杨锋涛 ; 丁剑
  • 英文作者:Chao Xing-Bing;Pan Lu-Ping;Wang Zi-Sheng;Yang Feng-Tao;Ding Jian-Ping;National Laboratory of Solid State Microstructures, School of Physics, Nanjing University;College of Science, Jiujiang University;
  • 关键词:全息 ; 分辨率 ; 波带片 ; 液晶器件
  • 英文关键词:holography;;resolution;;zone plates;;liquid-crystal devices
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:南京大学物理学院固体微结构国家重点实验室;九江学院理学院;
  • 出版日期:2019-03-11 17:09
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家重点研发计划(批准号:2018YFA0306200);; 国家自然科学基金(批准号:91750202,11534006)资助的课题~~
  • 语种:中文;
  • 页:WLXB201906012
  • 页数:10
  • CN:06
  • ISSN:11-1958/O4
  • 分类号:95-104
摘要
作为复光场显微成像的一种新技术,菲涅耳非相干关联全息术(Fresnel incoherent correlation holography,FINCH)因其非相干光记录的特点在近年来受到关注.FINCH作为一种新型非相干全息系统,如何设计光路实现其最佳的分辨率是一个关键问题.然而,针对这个问题的讨论,目前已有文献存在不同的观点,有关FINCH最佳分辨率的成像条件仍有待研究.全息图有效孔径大小是决定全息成像系统分辨率的重要因素,在FINCH系统中,全息记录距离的变化则会引起全息图有效孔径发生变化,全息图的有效孔径大小不仅与光路各元件的孔径有关,还与相干光波相互干涉叠加区域的面积以及图像传感器的像素间距等因素有关.本文基于波动光学理论,结合FINCH全息图的波带结构特征,研究了FINCH全息图的有效孔径.研究发现数字全息记录相机的像素化特性是影响FINCH成像分辨率的决定性因素,并进一步通过数值模拟和光学实验验证了理论分析结果:全息图记录距离(Z_h)等于空间光调制器加载的衍射透镜焦距(f_d)时,FINCH系统的再现像将会达到最佳横向分辨率,且分辨率随成像距离|Z_h-f_d|的增大而降低.
        As a new technique of photomicrography of complex optical field, the Fresnel incoherent correlation holography(FINCH) is particularly attractive in recent years because of its incoherent optical recording characteristics. For a new image recording and reconstruction system, a key concern is how to configure the experimental layout of FINCH by using available optical elements to achieve optimal resolution. However, in previous reports, there exist different viewpoints about this issue, and the imaging conditions of the best resolution remain to be clarified. As is well known, the imaging resolution is affected by the effective aperture of hologram and the change of the recording distance between spatial light modulator(SLM) and image sensor(CCD) can cause the hologram aperture to change. In the FINCH system the effective aperture of hologram is related not only to the aperture influence of each element used in the recording system, but also to the overlapping area of interference between the signal and reference wave and the pixel spacing of the image sensor. In previous reports, the researchers mainly used the ray-tracing method to discuss the effective aperture radius of hologram by ignoring the influences of the diffraction of light wave and the pixel spacing size of image sensor on the aperture of hologram. Based on the theories of wave optics we carry out a thorough investigation into the effective aperture of FINCH. We find that the pixelization of the image sensor, e.g. CCD, is a decisive factor influencing the resolution of FINCH, and we adopt numerical simulations and optical experiments to further verify the theoretical conclusions that the optimal lateral resolution of FINCH is achieved only if the recording distance(Z_h) is equal to the focal length(f_d) of diffractive lens displayed on a spatial light modulator;the resolution is deteriorated with the increase of |Z_h-f_d|. From the viewpoint of Fourier optics, the smaller the imaging distance |Z_h-f_d|, the larger the aperture angle of hologram(≈R_h/|Z_h-f_d|),the higher the collected spatial frequency is, hence, the higher the lateral resolution is. On the other hand, although the FINCH overcomes the spatial coherence limitation, it requires temporally coherent or quasi-monochromatic light. Our study also indicates that the requirements for the spatiotemporal coherence can be eased when the CCD is located at the focal plane of diffractive lens.
引文
[1] Osten W, Faridian A, Gao P, Korner K, Naik D, Pedrini G,Singh A K, Takeda M, Wilke M 2014 Appl. Opt. 53 G44
    [2] Kreis T 2016 IEEE Trans. Ind. Infomat. 12 240
    [3] Kelner R, Rosen J 2016 IEEE Trans. Ind. Infomat. 12 220
    [4] Rosen J, Brooker G 2007 Opt. Lett. 32 912
    [5] Rosen J, Brooker G 2008 Nat. Photon. 2 190
    [6] Rosen J, Brooker G 2007 Opt. Express 15 2244
    [7] Lai X M, Zhao Y, Lv X H, Zhou Z Q, Zeng S Q 2012 Opt.Lett. 37 2445
    [8] Siegel N, Rosen J, Brooker G 2012 Opt. Express 20 19822
    [9] Katz B, Rosen J 2010 Opt. Express 18 962
    [10] Rosen J, Kelner R 2014 Opt. Express 22 29048
    [11] Katz B, Rosen J, Kelner R, Brooker G 2012 Opt. Express 209109
    [12] Wan Y H, Man T L, Chen H, Jiang Z Q, Wang D Y 2014Chin. Phys. Lett. 31 044203
    [13] Siegel N, Rosen J, Brooker G 2013 Opt. Lett. 38 3922
    [14] Katz B, Wulich D, Rosen J 2010 Appl. Opt. 49 5757
    [15] Brooker G, Siegel N, Wang V, Rosen J 2011 Opt. Express 195047
    [16] Rosen J, Siegel N, Brooker G 2011 Opt. Express 19 26249
    [17] Bouchal P, Kapitan J, Chmelik R, Bouchal Z 2011 Opt.Express 19 15603
    [18] Vijayakumar A, Kashter Y, Kelner R, Rosen J 2017 Appl.Opt. 56 F67
    [19] Bai Y H, Zang R H, Wang P, Rong T D, Ma F Y, Du Y L,Duan Z Y, Gong Q X 2018 Acta Phys. Sin. 67 064202(in Chinese)[白云鹤,臧瑞环,汪盼,荣腾达,马凤英,杜艳丽,段智勇,弓巧侠2018物理学报67 064202]
    [20] Goodman J W 1996 Introduction to Fourier Optics(New York:McGraw-Hill)pp66-67, pl57
    [21] Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics(Cambridge:Cambridge University Press)pp128-144
    [22] Kim M K 2011 Digital Holographic Microscopy:Principles,Techniques, and Applications(New York:Springer)pp63-64
    [23] Claus D, Iliescu D, Rodenburg J M 2013 Appl. Opt. 52 A326
    [24] Sun P C, Leith E N 1994 Appl. Opt. 33 597
    [25] Yang G G, Chen H S, Leith E N 2000 Appl. Opt. 39 4076
    [26] Muffoletto R P, Tyler J M, Tohline J E 2007 Opt. Express 155631
    [27] Guo C S, Xie Y Y, Sha B 2014 Opt. Lett. 39 2338
    [28] Jacquot M, Sandoz P, Tribillon G 2001 Opt. Commun. 190 87
    [29] Cuche E, Marquet P, Depeursinge C 1999 Appl. Opt. 38 6994
    [30] Guo C S, Zhang L, Rong Z Y, Wang H T 2003 Opt. Eng. 422768

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700