极地预报年及相关科学问题
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A brief introduction to Year of Polar Prediction and its related scientific questions
  • 作者:姜珊 ; 杨清华 ; 孙启振 ; 李春花 ; 张林 ; 滕骏华
  • 英文作者:Jiang Shan;Yang Qinghua;Sun Qizhen;Li Chunhua;Zhang Lin;Teng Junhua;Key Laboratory of Research on Marine Hazards Forecasting, National Marine Environmental Forecasting Center;Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University;
  • 关键词:极地预报计划 ; 极地预报年 ; 科学问题
  • 英文关键词:Polar Prediction Project;;Year of Polar Prediction;;scientific questions
  • 中文刊名:SEAC
  • 机构:国家海洋环境预报中心国家海洋局海洋灾害预报技术研究重点实验室;中山大学大气科学学院广东省气候变化与自然灾害研究重点实验室;
  • 出版日期:2018-11-15
  • 出版单位:海洋学报
  • 年:2018
  • 期:v.40
  • 基金:国家重点研发计划(2018YFC1407205,2018YFA0605901)
  • 语种:中文;
  • 页:SEAC201811016
  • 页数:9
  • CN:11
  • ISSN:11-2055/P
  • 分类号:159-167
摘要
为有效应对全球气候变化和极地增暖挑战,世界气象组织(WMO)于2013年启动了"极地预报计划"(PPP,2013-2022年),并于2017年启动了PPP的核心行动"极地预报年"(YOPP,2017年中期至2019年中期)。本文对"极地预报计划"和"极地预报年"的相关情况进行了介绍,重点说明了该研究项目支撑下在社会效益、检验、观测、模拟、资料同化、集合预报、可预报性和诊断、全球关联8个领域需要解决的科学问题和开展的工作。同时,探讨了我国借PPP/YOPP实施契机,在极地现场观测、数值预报和信息服务方面需要做出的努力。
        The Polar Prediction Project(PPP, 2013-2022) and Year of Polar Prediction(YOPP, mid-2017 to mid-2019) were initiated by the World Meteorological Organization(WMO), to effectively tackle the challenges of global climate change and polar warming. Eight key research goals, e.g., user applications and societal benefit, verification, observations, modelling, data assimilation, ensemble forecasting, predictability and forecast error diagnosis, global linkages, as well as the selected activities were discussed. Suggestions related to the in-situ observation, numerical prediction and information service, are also given to the Chinese polar research community to well take this opportunity of the PPP/YOPP implementation.
引文
[1] Hansen J, Ruedy R, Sato M, et al. Global surface temperature change[J]. Reviews of Geophysics, 2010, 48(4): RG4004.
    [2] Simmonds I. Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979-2013[J]. Annals of Glaciology, 2015, 56(69): 18-28.
    [3] Stroeve J, Barrett A, Serreze M, et al. Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness[J]. The Cryosphere Discussions, 2014, 8(2): 2179-2212.
    [4] WMO. The Global Climate in 2011-2015[M]. Geneva: World Meteorological Organization, 2016.
    [5] Jung T, Gordon N D, Bauer P, et al. Advancing polar prediction capabilities on daily to seasonal time scales[J]. Bulletin of the American Meteorological Society, 2016, 97(9): 1631-1647.
    [6] Smith L C, Stephenson S R. New trans-Arctic shipping routes navigable by midcentury[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13): E1191-E1195.
    [7] Emmerson C, Lahn G. Arctic opening: opportunity and risk in the high north[R]. Chatham House, 2012: 59.
    [8] Blanchard-Wrigglesworth E, Barthélemy A, Chevallier M, et al. Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-arctic and regional scales[J]. Climate Dynamics, 2017, 49(4): 1399-1410.
    [9] 姜珊, 杨清华, 梁颖祺, 等. 可服务于北极航道的海冰与气象预报信息综合分析[J]. 极地研究, 2017, 29(3): 399-413. Jiang Shan, Yang Qinghua, Liang Yingqi, et al. Sea ice and weather forecasting information for Arctic sea routes: a synthetic analysis[J]. Chinese Journal of Polar Research, 2017, 29(3): 399-413.
    [10] Powers J G, Manning K W, Bromwich D H, et al. A decade of Antarctic science support through AMPS[J]. Bulletin of the American Meteorological Society, 2012, 93(11): 1699-1712.
    [11] WNO. WWRP polar prediction project science plan[EB/OL]. (2013-03-19)[2017-12-02]. https://www.polarprediction.net/fileadmin/user_upload/www.polarprediction.net/Home/Documents/WWRP-PPP_Science_Plan_FInal_19Mar2013.pdf
    [12] WNO. WWRP polar prediction project implementation plan for the year of polar prediction (YOPP)[EB/OL]. (2016-05-31)[2017-12-02]. http://epic.awi.de/41795/1/FINAL_WWRP_PPP_YOPP_Plan_28_July_web.pdf.
    [13] Goessling H F, Jung T, Klebe S, et al. Paving the way for the year of polar prediction[J]. Bulletin of the American Meteorological Society, 2016, 97(4): ES85-ES88.
    [14] Bromwich D H, Monaghan A J, Manning K W, et al. Real-time forecasting for the Antarctic: an evaluation of the Antarctic mesoscale prediction system (AMPS)[J]. Monthly Weather Review, 2005, 133(3): 579-603.
    [15] Jung T, Matsueda M. Verification of global numerical weather forecasting systems in polar regions using TIGGE data[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(695): 574-582.
    [16] Bauer P, Magnusson L, Thépaut J N, et al. Aspects of ECMWF model performance in polar areas[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(695): 583-596.
    [17] Roemmich D, Gilson J. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program[J]. Progress in Oceanography, 2009, 82(2): 81-100.
    [18] Laxon S W, Giles K A, Ridout A L, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume[J]. Geophysical Research Letters, 2013, 40(4): 732-737.
    [19] Kaleschke L, Tian-Kunze X, Maa N, et al. Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period[J]. Geophysical Research Letters, 2012, 39(5): L05501.
    [20] Tian-Kunze X, Kaleschke L, Maa N, et al. SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification[J]. The Cryosphere, 2014, 8(3): 997-1018.
    [21] Kwok R. Satellite remote sensing of sea-ice thickness and kinematics: a review[J]. Journal of Glaciology, 2010, 56(200): 1129-1140.
    [22] Kern S, Spreen G. Uncertainties in Antarctic sea-ice thickness retrieval from ICESat[J]. Annals of Glaciology, 2015, 56(69): 107-119.
    [23] Inoue J, Enomoto T, Hori M E. The impact of radiosonde data over the ice-free Arctic Ocean on the atmospheric circulation in the Northern Hemisphere[J]. Geophysical Research Letters, 2013, 40(5): 864-869.
    [24] Yamazaki A, Inoue J, Dethloff K, et al. Impact of radiosonde observations on forecasting summertime arctic cyclone formation[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(8): 3249-3273.
    [25] Inoue J, Yamazaki A, Ono J, et al. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route[J]. Scientific Reports, 2015, 5: 16868.
    [26] Inoue J, Enomoto T, Miyoshi T, et al. Impact of observations from Arctic drifting buoys on the reanalysis of surface fields[J]. Geophysical Research Letters, 2009, 36(8): L08501.
    [27] Meredith M P, Schofield O, Newman L, et al. The vision for a Southern Ocean observing system[J]. Current Opinion in Environmental Sustainability, 2013, 5(3/4): 306-313.
    [28] Sandu I, Beljaars A, Bechtold P, et al. Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models?[J]. Journal of Advances in Modeling Earth Systems, 2013, 5(2): 117-133.
    [29] Bromwich D H, Otieno F O, Hines K M, et al. Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(2): 274-292.
    [30] Jung T, Rhines P B. Greenland’s pressure drag and the Atlantic storm track[J]. Journal of the Atmospheric Sciences, 2007, 64(11): 4004-4030.
    [31] Renfrew I A, Petersen G N, Sproson D A J, et al. A comparison of aircraft-based surface-layer observations over Denmark Strait and the Irminger Sea with meteorological analyses and QuikSCAT winds[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135(645): 2046-2066.
    [32] Elvidge A D, Renfrew I A, King J C, et al. Foehn jets over the Larsen C Ice Shelf, Antarctica[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(688): 698-713.
    [33] Holtslag A A M, Svensson G, Baas P, et al. Stable atmospheric boundary layers and diurnal cycles: challenges for weather and climate models[J]. Bulletin of the American Meteorological Society, 2013, 94(11): 1691-1706.
    [34] Vihma T, Pirazzini R, Fer I, et al. Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review[J]. Atmospheric Chemistry and Physics, 2014, 14(17): 9403-9450.
    [35] Bougeault P, Toth Z, Bishop C, et al. The THORPEX interactive grand global ensemble[J]. Bulletin of the American Meteorological Society, 2010, 91(8): 1059-1072.
    [36] Hines K M, Bromwich D H, Bai L S, et al. Sea ice enhancements to Polar WRF[J]. Monthly Weather Review, 2015, 143(6): 2363-2385.
    [37] Powers J G. Mesoscale NWP over Antarctica[C]//Proceedings of Polar Prediction Project Meeting. Boulder, Colorado: NCAR, 2013.
    [38] Kalnay E. Atmospheric modeling, data assimilation and predictability[M]. Cambridge: Cambridge University Press, 2003: 368.
    [39] Tilinina N, Gulev S K, Bromwich D H. New view of Arctic cyclone activity from the Arctic system reanalysis[J]. Geophysical Research Letters, 2014, 41(5): 1766-1772.
    [40] Juricke S, Goessling H F, Jung T. Potential sea ice predictability and the role of stochastic sea ice strength perturbations[J]. Geophysical Research Letters, 2014, 41(23): 8396-8403.
    [41] Holland M M, Bailey D A, Vavrus S. Inherent sea ice predictability in the rapidly changing Arctic environment of the community climate system model, version 3[J]. Climate Dynamics, 2011, 36(7/8): 1239-1253.
    [42] Holland M M, Stroeve J. Changing seasonal sea ice predictor relationships in a changing Arctic climate[J]. Geophysical Research Letters, 2011, 38(8): L18501.
    [43] Chevallier M, Salas-Mélia D. The role of sea ice thickness distribution in the Arctic sea ice potential predictability: a diagnostic approach with a coupled GCM[J]. Journal of Climate, 2012, 25(8): 3025-3038.
    [44] Tietsche S, Day J J, Guemas V, et al. Seasonal to interannual Arctic sea ice predictability in current global climate models[J]. Geophysical Research Letters, 2014, 41(3): 1035-1043.
    [45] Guemas V, Blanchard-Wrigglesworth E, Chevallier M, et al. A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(695): 546-561.
    [46] Wang W Q, Chen M Y, Kumar A. Seasonal prediction of Arctic Sea ice extent from a coupled dynamical forecast system[J]. Monthly Weather Review, 2013, 141(4): 1375-1394.
    [47] Stroeve J, Hamilton L C, Bitz C M, et al. Predicting September sea ice: ensemble skill of the SEARCH Sea Ice Outlook 2008-2013[J]. Geophysical Research Letters, 2014, 41(7): 2411-2418.
    [48] Day J J, Hawkins E, Tietsche S. Will Arctic sea ice thickness initialization improve seasonal forecast skill?[J]. Geophysical Research Letters, 2014, 41(21): 7566-7575.
    [49] Cohen J, Screen J A, Furtado J C, et al. Recent Arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience, 2014, 7(9): 627-637.
    [50] Barnes E A, Screen J A. The impact of Arctic warming on the midlatitude jet-stream: can it? Has it? Will it?[J]. WIREs Climate Change, 2015, 6(3): 277-286.
    [51] Jung T, Doblas-Reyes F, Goessling H, et al. Polar lower-latitude linkages and their role in weather and climate prediction[J]. Bulletin of the American Meteorological Society, 2015, 96(11): ES197-ES200.
    [52] Jung T, Kasper M A, Semmler T, et al. Arctic influence on subseasonal midlatitude prediction[J]. Geophysical Research Letters, 2014, 41(10): 3676-3680.
    [53] 杨清华, 刘骥平, 张占海, 等. 北极海冰数值预报的初步研究——基于海冰—海洋耦合模式MITgcm的模拟试验[J]. 大气科学, 2011, 35(3): 473-482. Yang Qinghua, Liu Jiping, Zhang Zhanhai, et al. A preliminary study of the Arctic Sea Ice numerical forecasting: coupled sea ice-ocean modelling experiments based on MITgcm[J]. Chinese Journal of Atmospheric Sciences, 2011, 35(3): 473-482.
    [54] 杨清华, 李春花, 邢建勇, 等. 2010年夏季北极海冰数值预报试验[J]. 极地研究, 2012, 24(1): 87-94. Yang Qinghua, Li Chunhua, Xing Jianyong, et al. Arctic sea ice forecasting experiments in the summer of 2010[J]. Chinese Journal of Polar Research, 2012, 24(1): 87-94.
    [55] Yang Q H, Liu J P, Zhang Z H, et al. Sensitivity of the Arctic sea ice concentration forecasts to different atmospheric forcing: a case study[J]. Acta Oceanologica Sinica, 2014, 33(12): 15-23.
    [56] Yang Q H, Losa S N, Losch M, et al. Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter[J]. Journal of Geophysical Research: Oceans, 2014, 119(10): 6680-6692.
    [57] 赵杰臣, 杨清华, 李明, 等. Nudging资料同化对北极海冰密集度预报的改进[J]. 海洋学报, 2016, 38(5): 70-82. Zhao Jiechen, Yang Qinghua, Li Ming, et al. Improving Arctic sea ice concentration forecasts with a Nudging data assimilation method[J]. Haiyang Xuebao, 2016, 38(5): 70-82.
    [58] 孙启振, 丁卓铭, 沈辉, 等. 我国极地数值天气预报系统的初步建立与应用[J]. 海洋预报, 2017, 34(4): 1-10. Sun Qizhen, Ding Zhuoming, Shen Hui, et al. Polar numerical weather prediction system: preliminary establishment and application[J]. Marine Forecasts, 2017, 34(4): 1-10.
    [59] Yang Q H, Losa S N, Losch M, et al. The role of atmospheric uncertainty in Arctic summer sea ice data assimilation and prediction[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(691): 2314-2323.
    [60] Yang Q H, Losa S N, Losch M, et al. Assimilating summer sea-ice concentration into a coupled ice-ocean model using a LSEIK filter[J]. Annals of Glaciology, 2015, 56(69): 38-44.
    [61] Yang Q H, Losch M, Losa S N, et al. Brief communication: the challenge and benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation[J]. The Cryosphere, 2016, 10(2): 761-774.
    [62] Yang Q H, Losch M, Losa S N, et al. Taking into account atmospheric uncertainty improves sequential assimilation of SMOS sea ice thickness data in an ice-ocean model[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(3): 397-407.
    [63] Liang X, Yang Q H, Nerger L, et al. Assimilating Copernicus SST data into a pan-Arctic ice-ocean coupled model with a local SEIK filter[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(9): 1985-1999.
    [64] Mu L J, Yang Q H, Losch M, et al. Improving sea ice thickness estimates by assimilating CryoSat-2 and SMOS sea ice thickness data simultaneously[J]. Quarterly Journal of the Royal Meteorological Society, 2018, 144(711): 529-538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700