基于螺旋流的输气管道内水合物流动与传热分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Hydrate Flow and Heat Transfer in Gas Pipeline Based on Spiral Flow
  • 作者:葛昊 ; 饶永超 ; 王树立 ; 蔡跃跃 ; 孙毅 ; 王子文 ; 丁博洋
  • 英文作者:Ge Hao;Rao Yongchao;Wang Shuli;Cai Yueyue;Sun Yi;Wang Ziwen;Ding Boyang;Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology;School of Petroleum Engineering,Changzhou University;
  • 关键词:螺旋流 ; 水合物颗粒 ; 扭带扭率 ; 湍流强度 ; 沉积 ; 传热 ; 数值模拟
  • 英文关键词:spiral flow;;hydrate particle;;twisting belt twist rate;;turbulent intensity;;deposition;;heat transfer;;numerical simulation
  • 中文刊名:SYJI
  • 英文刊名:China Petroleum Machinery
  • 机构:江苏省油气储运技术重点实验室;常州大学石油工程学院;
  • 出版日期:2018-11-10
  • 出版单位:石油机械
  • 年:2018
  • 期:v.46;No.477
  • 基金:国家自然科学基金项目“基于螺旋流的天然气管道水合物堵塞风险边界拓展机制研究”(51574045)
  • 语种:中文;
  • 页:SYJI201811021
  • 页数:7
  • CN:11
  • ISSN:42-1246/TE
  • 分类号:125-131
摘要
目前文献以气相为主导的输气管道螺旋颗粒流动与传热报道较少。鉴于此,采用RNG k-ε模型对螺旋管流中水合物颗粒的速度分布、湍流强度分布、颗粒沉积特性和传热特性进行研究。研究结果表明:当扭率为8. 8时,雷诺数越大,速度极大值的范围越大;扭率越小,在管中心形成的强制涡衰减越慢,湍流强度越大,水合物颗粒掺混效果越好,利于传热;无扭带管道中水合物颗粒比有扭带管道中水合物颗粒体积分数大6~8倍,扭带扭率越小,管底颗粒沉积越少;管道的努塞尔数随雷诺数逐渐增大,在相同的雷诺数条件下,扭带的扭率越小其努塞尔数越大,最大可提高4倍。研究结果可为水合物的安全输送提供理论指导。
        The spiral flow in pipeline has the features of low energy consumption,long transport distance and strong carrying capacity. The RNG k-ε model is used to analyze the velocity distribution,turbulent intensity distribution,particle deposition behavior and heat transfer behavior of hydrate particles in spiral flow. The study results show that,under the twist rate of 8. 8,the range of the maximum velocity value increases with the Reynolds number,and there are two maximum values of the fluid velocity in the twisting belt pipeline. Furthermore,smaller twist rate would lower the forced vortex attenuation formed at the center of the pipe,resulting in greater turbulence intensity and better hydrate particle blending effect,which is preferable for heat transfer. The volume fraction of hydrate particles in the nontwisting belt pipeline is 6~8 times larger than that in the twisting belt pipeline. The smaller the twist rate is,the less the sedimentation of the hydrate particles at pipeline bottom is. The Nusselt number of the pipeline increases with Re. Given the same Re,the Nusselt number increases with the decrease of the twist rate,and can be increased by a maximum of 4 times by reducing twist rate. The study could provide theoretical guidance for the safe transportation of hydrates.
引文
[1]徐勇军,叶国兴,杨晓西,等.表面活性剂对水合物生成的影响及其应用前景[J].天然气工业,2002,22(1):85-87.XU Y J,YE G X,YANG X X,et al.Effect of surfactant on hydrate formation and its appplied prospects[J].Natural Gas Industry,2002,22(1):85-87.
    [2]张庆东,李玉星,王武昌.化学添加剂对水合物生成和储气的影响[J].石油与天然气化工,2014,43(2):146-151.ZHANG Q D,LI Y X,WANG W C.Influence of chemical additives on hydrate formation and gas storage[J].Chemical Engineering of Oil&Gas,2014,43(2):146-151.
    [3]SINQUIN A,PALERMO T,PEYSSON Y.Rheological and flow properties of gas hydrate susphensions[J].Oil&Gas Science and Technology-Rev.IFP,2004,59(1):41-57.
    [4]宫敬,史博会,吕晓方,等.多相混输管道水合物生成及其浆液输送[J].中国石油大学学报(自然科学版),2013,37(5):163-167.GONG J,SHI B H,LX F,et al.Gas hydrate formation and hydrate slurry hlow in multiphase transportation system[J].Journal of China University of Petroleum,2013,37(5):163-167.
    [5]ZERPA L E,SALAGER J L,KOH C A,et al.Surface chemistry and gas hydrates in flow assurance[J].Industrial&Engineering Chemistry Research,2010,50(1):188-197.
    [6]陈鹏,刘福旺,李玉星,等.水合物浆液流动特性数值模拟[J].油气储运,2014,33(2):160-164.CHEN P,LIU F W,LI Y X,et al.Numerical simulation of hydrate slurry flow behavior[J].Oil&Gas Storage and Transportation,2014,33(2):160-164.
    [7]王树立,饶永超,张琳,等.水平管内螺旋流流动特性研究现状与进展[J].太原理工大学学报,2013,44(2):232-236.WANG S L,RAO Y C,ZHANG L,et al.Research status and progress on flow characteristics of spiral flow in horizontal pipe[J].Journal of Taiyuan University of Technology,2013,44(2):232-236.
    [8]王树立,饶永超,韩永嘉,等.螺旋流发生装置的对比分析研究[J].流体机械,2013,41(2):30-38.WANG S L,RAO Y C,HAN Y J,et al.Comparative analysis of spiral flow generator[J].Flud Machinery,2013,41(2):30-38.
    [9]吴金星,张灿灿,郭桂宏,等.内置双旋线换热管内流动与传热数值模拟[J].工程热物理学报,2014,35(8):1603-1605.WU J X,ZHANG C C,GUO G H,et al.Numerical simulation of inscrted flow and heat transfer for the tube with double-spiral-line[J].Journal of Engineering Thermophysics,2014,35(8):1603-1605.
    [10]刘佳驹,刘伟.三头螺旋波纹管强化传热数值模拟[J].工程热物理学报,2013,34(11):2128-2131.LIU J J,LIU W.A numerical study on heat transfer of three-head spiral bellows[J].Journal of Engineering Thermophysics,2013,34(11):2128-2131.
    [11]梁俊,饶永超,王树立,等.以扭带起旋的气固两相螺旋流流动与传热数值模拟[J].石油机械,2017,45(7):109-115.LIANG J,RAO Y C,WANG S L,et al.Numerical simulation of spiral flow and heat transfer of gas-solid two-phase spiral flow generated by twisted-tape[J].China Petroleum Machinery,2017,45(7):109-115.
    [12]朱莹,王树立,史小军.基于PHOENICS的管道螺旋流数值模拟[J].石油机械,2008,36(7):19-22.ZHU Y,WANG S L,SHI X J.Numerical simulation of pipeline spiral flow based on PHOENICS[J].China Petroleum Machinery,2008,36(7):19-22.
    [13]NANAN K,THIANPONG C,PROMVONGE P,et al.Investigation of heat transfer enhancement by perforated helical twisted-tapes[J].International Communications in Heat and Mass Transfer,2014(52):106-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700