基于金属-绝缘体-金属波导耦合纳米腔的等离子体三波分复用结构(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Plasmonic triple-wavelength demultiplexing structure based on metal-insulator-metal waveguides side-coupled with nanoring cavities
  • 作者:徐思宇 ; 张兆健 ; 何新 ; 韩云鑫 ; 张晶晶 ; 黄杰 ; 丁博 ; 杨俊波
  • 英文作者:Xu Siyu;Zhang Zhaojian;He Xin;Han Yunxin;Zhang Jingjing;Huang Jie;Chen Dingbo;Yang Junbo;College of Liberal Arts and Sciences, National University of Defense Technology;
  • 关键词:等离子体 ; 解复用 ; 时域有限差分法 ; 金属绝缘体金属 ; 纳米腔
  • 英文关键词:plasmonic;;demultiplexing;;finite-difference time-domain;;metal-insulator-metal;;nanoring cavity
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:国防科技大学文理学院;
  • 出版日期:2018-11-05 09:54
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.292
  • 基金:国家自然科学基金(6090700361671455);; NUTD(JC13-02-13,ZK17-13-01);; 湖南省自然科学基金(13JJ3001);; 新世纪大学优秀人才计划(NCET-12-0142)
  • 语种:英文;
  • 页:HWYJ201902033
  • 页数:7
  • CN:02
  • ISSN:12-1261/TN
  • 分类号:240-246
摘要
从理论上和数值上研究了一种基于金属-绝缘体-金属波导耦合纳米腔的等离子体三波分复用结构。该结构由三个输出通道组成,每个通道由两个纳米腔分布于直波导两侧。通过改变环的几何参数、填充介质和内圆和外圆的相对位置,可以动态地调节每个通道的反射和透射光谱。最后,根据三个通道的反射和透射特性,研究了在三个通信波长1 310、1 490和1 550 nm处实现的解复用,并具有优良的性能。将时域耦合模理论和时域有限差分法(FDTD)结合起来进行仿真和分析,为芯片集成全光电路的应用提供了可能。
        A plasmonic triple-wavelength demultiplexing structure based on metal-insulator-metal waveguides side-coupled with nanoring cavities was proposd by studying theoretically and numerically.The structure consisted of three output channels, each of which was sandwiched by two nanoring cavities.By changing the filling medium of the ring and the relative position of the inner and outer circle, the reflection and transmission spectrum of each channel could be dynamically tunable. Finally, according to the reflection and transmission characteristics of three channels, the demultiplex at three telecommunication wavelengths 1 310 nm, 1 490 nm and 1 550 nm with excellent performance was studied. Temporal coupledmode(CMT) theory and finite-difference time-domain(FDTD) method are applied to simulation and analysis, and this work can find potential applications for on-chip integrated all-optical circuits.
引文
[1]Liu H,Gao Y,Zhu B,et al.A T-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators[J].Opt Commun,2015,334:164-169.
    [2]Neutens P,Dorpe P V,Vlaminck I D,et al.Elec-trical detection of confined gap plasmons in metal-insulatormetal waveg-uides[J].Nat Photon,2009,3:283-286.
    [3]Zhu Zhendong,Bai Benfeng,Tan Qiaofeng.Resonance characteristics of surface plasmon elements on laminated cylindrical table[J].Infrared and Laser Engineering,2017,46(9):0934001.(in Chinese)
    [4]Zhu Mengjun,Zhang Dawei,Chen Jiannong.Design of broadband near-infrared surface plasmon logic and gate devices[J].Infrared and Laser Engineering,2016,45(3):0320003.(in Chinese)
    [5]Dionne J A,Sweatlock L A,Atwater H A.Plasmon slot waveguides:Towards chip-scale propagation with subwavelength-scale localization[J].Phys Rev B,2006,73:035407.
    [6]Johnson P B,Christy R W.Optical constants of the noble metals[J].Phys Rev B,1972,6:4370-4379.
    [7]Li Q,Wang T,Su Y,et al.Coupled mode theory analysis of mode-splitting in coupled cavity system[J].Opt Exp,2010,18:8367-8382.
    [8]Wang G,Lu H,Liu X,et al.Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J].Opt Exp,2011,19:3513-3518.
    [9]Chremmos I.Magnetic field integral equation analysis of interactionbetween a surface plasmon polariton and a circular dielectric cavity embedded in the metal[J].JOpt Soc Amer A,2009,26:2623-2633.
    [10]Hu F,Yi H,Zhou Z.Wavelength demultiplexing structure based on arrayed plasmonic slot cavities[J].Opt Lett,2011,36:1500-1502.
    [11]Huang Lingling.Phase control characteristics and applications of the metamaterials based on chiral light field[J].Infrared and Laser Engineering,2016,45(6):0634001.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700