NiCl_2晶体生长的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation on the Growth of NiCl_2 Crystal
  • 作者:肖志夏 ; 朱艳丽 ; 赵勇 ; 邢家超 ; 焦清介
  • 英文作者:XIAO Zhixia;ZHU Yanli;ZHAO Yong;XING Jiachao;JIAO Qingjie;State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology;
  • 关键词:氯化镍 ; 表面能 ; 密度泛函理论 ; 晶体形貌
  • 英文关键词:Nickel chloride;;Surface energy;;Density functional theory;;Crystal morphology
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:北京理工大学爆炸科学与技术国家重点实验室;
  • 出版日期:2015-12-10
  • 出版单位:高等学校化学学报
  • 年:2015
  • 期:v.36
  • 基金:国家自然科学基金(批准号:51304024,11172042);; 国家科技支撑计划(批准号:2013BAE04B02)资助~~
  • 语种:中文;
  • 页:GDXH201512022
  • 页数:7
  • CN:12
  • ISSN:22-1131/O6
  • 分类号:155-161
摘要
利用剑桥总能量连续软件包(CASTEP)程序,采用密度泛函理论(DFT)对Ni Cl_2晶体(003),(101),(104),(018)和(113)面真空slab模型进行了总能量、表面能以及能带结构和态密度的计算,采用布拉维法则和唐纳-哈克定律(BFDH)形貌预测方法对氯化镍晶体形貌及其各晶面生长习性进行了计算.收敛性测试结果表明真空层厚度为0.6 nm及模型厚度为3层原子对表面能计算影响较小.DFT计算结果显示,当氯化镍晶体以(003)面为主要显露面时,能量状态较为稳定,而以(101),(104),(018)和(113)面显露较多时,则能量稳定性较差.(003)面的前线价电子较为活跃,其晶面可能存在与溶液中离子、分子或是晶体生长基元发生键合的"活性点",能隙较大说明该面内层电子较为稳定.能带结构和态密度图分析显示(003)面费米能级附近能量较高的能带数量少于其它晶面,再次证明其为主要显露面时体系热力学性质较为稳定.BFDH对氯化镍晶体形貌的计算成功预测了显露面族(003)和(101),并且(003)面是最重要晶面.计算结果表明,氯化镍晶胞和各表面真空slab模型的生长习性存在差异,氯化镍晶胞、(003)、(101)和(113)面slab模型均趋向于生长为六棱柱或六角板状晶体,(104)和(018)面slab模型则趋向于生长为棒状晶体.
        Based on the density function theory( DFT) calculation of crystal faces( 003),( 101),( 104),( 018) and( 113) of Ni Cl_2 via CASTEP program,total energy,surface energy,band structures and density of states( DOS) were investigated. The crystal morphology of Ni Cl2 and the growth habit of the surface of Ni Cl_2 were calculated by Bravais-Friedel Donnay-Harker( BFDH) rules. The results show that vacuum width of 0. 6nm and atom layer of 3 are reasonable to the surface energy calcution. The energy state of Ni Cl_2 is far more stable when face( 003) is mainly unfold faces,while the energy state would be instable when faces( 101),( 104),( 018) and( 113) are the mainly unfolded. The electric structure results show that the front valence electron of face( 003) is active correspondingly. That is there may be some activity points on this face. The larger energy band gap of it shows that the inner electrons are more stable. The band structures and DOS analysis show that the number of high energy band of( 003) slab near the Fermi energy is less than that of other slabs,which proves the system is more stable no thermodynamics when( 003) is mainly unfold. BFDH calculation on Ni Cl_2 predicts the unfold faces( 003) and( 101) successfully and indicates( 003) is the most important face. Other results show that the growth habits of Ni Cl_2 cell and its surface slabs are different,Ni Cl_2 cell,( 003),( 101) and( 113) slabs are inclined to form crystal with hexagonal plate and bulk shapes,( 104) and( 018) slabs are inclined to form crystal with rod shape.
引文
[1]Prakash J.,Redey L.,Vissers D.R.,Journal of Power Sources,1999,84,63—69
    [2]Guo Y.Q.,Wen J.F.,Zhao J.F.,Li X.,Zhang W.H.,Lu X.L.,Zhu J.C.,Chinese Journal of Power Sources,2010,33(2),174—176(郭永全,闻俊锋,赵晋峰,李潇,张卫红,鹿学玲,朱金城.电源技术,2010,33(2),174—176)
    [3]Guo Y.Q.,Zhao J.F.,Li X.,Lu X.L.,Gao W.M.,Zhu J.C.,Chinese Journal of Power Sources,2010,34(6),556—558(郭永全,赵晋峰,李潇,鹿学玲,高文明,朱金城.电源技术,2010,34(6),556—558)
    [4]Shi Z.,Han S.J.,Xu Z.Z.,Xue J.,Zhang M.,Wang S.L.,Preparation Method of High Purity Anhydrous Nickel Chloride,CP201010564426,2011-05-18(时卓,韩绍娟,徐壮志,薛健,张明,王世林.高纯无水氯化镍的制备方法,CP 201010564426,2011-05-18)
    [5]Xing J.C.,Zhu Y.L.,Jiao Q.J.,Journal of New Materials for Electrochemical Systems,2014,17,209—211(邢家超,朱艳丽,焦清介.电化学系统用新型材料杂志,2014,17,209—211)
    [6]Gibbs J.W.,On the Equilibrium of Heterogeneous Substances,Collected Works,Longmans and Green Co.,New York,1928
    [7]Wulff G.,Krist Z.,Mineral,1901,34,449—530
    [8]Rtyson W.,Miller W.A.,Surf.Sci.,1997,62,67—276
    [9]Wan J.,Fan Y.L.,Gongeta1 D.W.,Model.Simul.Mater.Sci.Eng.,1999,7,189—206
    [10]Ahmad E.A.,Mallia G.,Kramer D.,Kucernaka A.R.,Harrisonabd N.M.,Journal of Materials Chemistry A,2013,1,11152—11162
    [11]Zhu W.H.,Jin H.M.,Wu P.,Liu H.L.,Phys.Rev.B,2004,70,165419-1—5
    [12]Nakayama M.,Hotta S.,Nakamura T.,Kasuga T.,Journal of the Ceramic Society of Japan,2013,121(8),611—613
    [13]Bruno M.,Aquilano D.,Pastero L.,Prencipe M.,Crystal Growth&Design,2008,8(7),2163—2170
    [14]Methfessel M.,Henning D.,Sche Zer M.,Phys.Rev.B,1992,46,4816—4829
    [15]Kollar J.,Vitos L.,Skriver H.L.,Phys.Rev.B,1994,49,11288—11292
    [16]Zhang Y.F.,Li J.J.,Ding K.N.,Chen W.K.,Zhou L.X.,Chem.J.Chinese Universities,2003,24(5),863—867(章永凡,李俊篯,丁开宁,陈文凯,周立新.高等学校化学学报,2003,24(5),863—867)
    [17]Jia J.Q.,Xie X.J.,Liang Z.H.,Zhang X.C.,Fan C.M.,Han P.D.,Chem.J.Chinese Universities,2012,33(5),1050—1056(贾金乾,解学佳,梁镇海,张小超,樊彩梅,韩培德.高等学校化学学报,2012,33(5),1050—1056)
    [18]Qi K.Z.,Wang Y.,Fu J.Q.,Selvaraj R.,Wang G.C.,Chem.J.Chinese Universities,2014,35(12),2523—2528(戚克振,王艳,付嘉琦,Selvaraj Rengaraj,王贵昌.高等学校化学学报,2014,35(12),2523—2528)
    [19]Donnay J.D.H.,Harker D.,Amer.Mineral,1937,22,446—447
    [20]Hartman P.,Perdok W.G.,Acta Crystallogr,1955,8,525—529
    [21]Wu Z.P.,Yin Z.L.,Chen Q.Y.,Li J.,Journal of Central South University(Science and Technology),2009,40(4),897—903(吴争平,尹周澜,陈启元,李洁.中南大学学报(自然科学版),2009,40(4),897—903)
    [22]Segall M.D.,Lindan P.J.D.,Probert M.J.,Pickard C.,Hasnip P.J.,Clark S.J.,Payne M.C.,J.Phys.Cond.Matt.,2002,14(11),2717—2743
    [23]Vanderbilt D.,Phys.Rev.B,1990,41,7892—7895
    [24]Casassa S.,Pisani C.,Phys.Rev.B,1995,51,7805—7816
    [25]Polatoglou H.M.,Methfessel M.,Phys.Rev.B,1993,48,1877—1883
    [26]Bravais A.,Etudes Cristallographiques,Gauthier,Villars,1866
    [27]Friedel G.,Bull.Soc.Fr.Mineral,1908,30,326—455
    [28]Ferrari A.,Braibanti A.,Bigliardi G.,Acta Crystallogr,1963,16,846—847

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700