含裂纹锆合金包壳管氢致多场耦合行为的数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation on Hydrogen-diffusion-induced Multi-field Coupling Behavior in Zircaloy Cladding Tube with Crack
  • 作者:夏仲佳 ; 张靖宇 ; 丁淑蓉
  • 英文作者:XIA Zhongjia;ZHANG Jingyu;DING Shurong;Institute of Mechanics and Computational Engineering,Department of Aeronautics and Astronautics,Fudan University;
  • 关键词:含裂纹锆合金包壳管 ; 氢化物应力再取向 ; 氢致多场耦合行为 ; 有限元计算 ; 径向开裂
  • 英文关键词:zircaloy cladding tube with crack;;stress-reorientation of hydride;;hydrogen-diffusion-induced multi-field coupling behavior;;finite element computation;;radial cracking
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:复旦大学航空航天系力学与工程仿真研究所;
  • 出版日期:2018-06-20
  • 出版单位:原子能科学技术
  • 年:2018
  • 期:v.52
  • 基金:国家自然科学基金资助项目(11772095,11572091);; 国家重点研发计划资助项目(2016YFB0700103)
  • 语种:中文;
  • 页:YZJS201806015
  • 页数:7
  • CN:06
  • ISSN:11-2044/TL
  • 分类号:102-108
摘要
考虑氢化物应力再取向,给出了锆合金包壳管氢致多场耦合行为的理论模型。建立了相应的多场耦合计算方法,编程获得了有限元程序。针对内压作用下的含轴向裂纹包壳管,建立了有限元模型,对其氢致多场耦合行为进行了计算分析。研究结果表明:对于含大量固溶氢原子的含裂纹包壳管,只有裂纹尖端区域析出较多的氢化物,这主要是由于此处存在很大的静水应力梯度和氢原子浓度梯度,并具有较低的氢原子固溶度;裂纹尖端析出的氢化物绝大部分沿包壳管径向,致使包壳管易于产生径向开裂,威胁其安全性;内压施加完成后,因氢化物析出膨胀,裂纹尖端区域的环向应力、径向应力、静水应力及其梯度均随时间而降低,导致氢化物析出逐渐减速。
        With the stress-reorientation of hydrides considered,the theoretical models were given for the hydrogen-diffusion-induced multi-field coupling behaviors in zircaloy cladding tubes.The corresponding multi-field coupling computational methods were developed and the finite element procedures were obtained.For an axially-cracked cladding tube subjected to internal pressures,the finite element model was established to calculate and analyze the hydrogen-diffusion-induced multi-field coupling behaviors.The research results indicate that for a cracked cladding tube initially containing plenty of hydrogen atoms in solid solution,only considerable amount of hydrides precipitate around the crack tip,which mainly results from the high hydrostatic stress gradients and concentration gradients of hydrogen in solid solution there,together with lowerterminal solid solubility;The majority of hydrides at the crack tip precipitate along the radial orientation,which will induce occurrence of radial cracking of cladding tubes to threaten their safety;After applying the internal pressures,due to the expansion strains induced by hydride precipitation,the hoop stress,the radial stress,the hydrostatic stress and its gradient will decrease with time,which results in a lower velocity of hydride precipitation.
引文
[1]ZIELINSKI A,SOBIESZCZYK S.Hydrogenenhanced degradation and oxide effects in zirconium alloys for nuclear applications[J].International Journal of Hydrogen Energy,2011,36:8 619-8 629.
    [2]NILSSON K F,NEGYESI M,SZARAZ Z,et al.An evaluation of the segmented expanding cone-mandrel test to assess hydride re-orientation and ductility reduction for Zircaloy-2 cladding tubes[J].Journal of Nuclear Materials,2015,466:220-233.
    [3]UDAGAWA Y,YAMAGUCHI M,ABE H,et al.Ab initio study on plane defects in zirconiumhydrogen solid solution and zirconium hydride[J].Acta Materialia,2010,58:3 927-3 938.
    [4]VARIAS A G,MASSIH A R.Hydride-induced embrittlement and fracture in metals-effects of stress and temperature distribution[J].Journal of the Mechanics and Physics of Solids,2002,50(7):1 469-1 510.
    [5]SINGH R N,STAHLE P,MASSIH A R,et al.Temperature dependence of misfit strains ofδ-hydrides of zirconium[J].Journal of Alloys and Compounds,2007,436:150-154.
    [6]PULS M P.Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys[J].Journal of Nuclear Materials,2009,393:350-367.
    [7]CHU H C,WU S K,CHIEN K F,et al.Effect of radial hydrides on the axial and hoop mechanical properties of Zircaloy-4cladding[J].Journal of Nuclear Materials,2007,362(1):93-103.
    [8]JERNKVIST L O,MASSIH A R.Multi-field modelling of hydride forming metals[J].Computational Materials Science,2014,85:363-382.
    [9]BERTOLINO G,MEYER G,IPINA J P.In situ crack growth observation and fracture toughness measurement of hydrogen charged Zircaloy-4[J].Journal of Nuclear Materials,2003,322:57-65.
    [10]JERNKVIST L O.Multi-field modelling of hydride forming metals,PartⅡ:Application to fracture[J].Computational Materials Science,2014,85:383-401.
    [11]汪秉忠,丁淑蓉,陈亮,等.辐照蠕变对锆合金包壳管吸氢所致多场耦合行为的影响[J].原子能科学技术,2017,51(9):1 625-1 632.WANG Bingzhong,DING Shurong,CHEN Liang,et al.Effect of irradiation creep on hydrogenpick-up induced multi-field coupling behavior in zircaloy cladding tube[J].Atomic Energy Science and Technology,2017,51(9):1 625-1 632(in Chinese).
    [12]SINGH R N,STHLE P,MASSIH A R,et al.Temperature dependence of misfit strains of 8-hydrides of zirconium[J].Journal of Alloys&Compounds,2007,436(1):150-154.
    [13]BAIR J,ZAEEM MA,TONKS M.A review on hydride precipitation in zirconium alloys[J].Journal of Nuclear Materials,2015,466:12-20.
    [14]VARIAS A G,MASSIH A R.Simulation of hydrogen embrittlement in zirconium alloys under stress and temperature gradients[J].Journal of Nuclear Materials,2000,279(2-3):273-285.
    [15]GONG X,ZHAO Y,DING S.A new method to simulate the micro-thermal-mechanical behaviors evolution in dispersion nuclear fuel elements[J].Mechanics of Materials,2014,77:14-27.
    [16]HAGRMAN D T,ALLISON C M,BERNA G A.MATPRO:A library of materials properties for light-water-reactor accident analysis:Volume4[M].US:[s.n.],2003.
    [17]KIM Y S.Delayed hydride cracking of spent fuel rods in dry storage[J].Journal of Nuclear Materials,2008,378:30-34.
    [18]CHA H J,WON J J,JANG K N,et al.Tensile hoop stress-,hydrogen content-and cooling ratedependent hydride reorientation behaviors of Zr alloy cladding tubes[J].Journal of Nuclear Materials,2015,464:53-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700